No Front of the Room
Changes in the Student Experience

Friday, May 15, 2015
10:15 am - 11:15 am

Dr. Jeff Saul - University of New Mexico
Audriana Stark - University of New Mexico
Dan Kemme - Dekker/Perich/Sabatini
introduction

the Collaborative Teaching and Learning Building at The University of New Mexico

- Active-learning
- The CTLB facility
- Pedagogical impacts
- Outcomes and data
Question #1

If you could improve your current classrooms, what would be the first thing you would change?
developing a 21st-Century Classroom

No Front of the Room
education issues:

21st Century Classroom

lecture is good for information transmission

but not information processing

active learning:

to process, use, synthesize, internalize

best way to implement?

supplement lecture?

augment and improve lecture?

replace lecture?
what is active learning?

students are actively involved in building an understanding

materials are carefully designed to promote conceptual change

cooperative groups allow students to teach each other

instructors as coach:

Meddler-in-the-Middle

vs.

Sage-on-the-Stage
Question #2

What physical change could you make that would have the biggest impact on learning?
the CTLB facility...

project parameters and design considerations
25,000 sf, 3 stories
just over 8,000 sf per story
constricted site, small footprint
design considerations

building plans

learning studio
design considerations

building section

3

2

1

learning studio

lobby
LEARNING STUDIO: A CLASSROOM DESIGNED FOR LEARNING BY **DOING**, RATHER THAN LEARNING BY **LISTENING**

Students should be able to:
- work in groups
- have access to computers
- perform experiments
- be accessible to instructors
- participate in class discussions
- display work to peers

Design considerations
design considerations

- 25 s.f. per student ...but fully accessible
- higher ceilings required ...but allow light from above
- room proportions are key...visibility but each table needs access to wall
- active learning ...but not physically flexible
- technology rich ...consider access floor
- lots of activity...consider room acoustics
Technology for Teachers
pedagogical impacts

"If you build it, will the faculty use it effectively?"
Comparing Classroom Environments

Fig. 2 Traditional fixed seat lecture hall (LH) with capacity of 290 students

Fig. 3 54 seat (LS-S) and 126 seat (LS-L) studio classrooms

<table>
<thead>
<tr>
<th></th>
<th>LH</th>
<th>LS-S*</th>
<th>LS-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities and Technology</td>
<td>Doc. camera, Computer, 2 large projection screens</td>
<td>Doc. camera, Computer, 2 large projection screens 6 round tables, 3 laptops per table, whiteboard walls.</td>
<td>Doc. camera, Computer, 2 large projection screens, 1 small projection screen per table, 14 round tables, 3 laptops per table, one white board per table.</td>
</tr>
<tr>
<td>Pre-class preparation</td>
<td>Reading assignment, quiz and ‘muddy point’</td>
<td>SAME</td>
<td>SAME</td>
</tr>
<tr>
<td>In-class activities</td>
<td>Unassigned groups, activities assessed by clickers, peer facilitators (PFs). 50% lecture.</td>
<td>Instructor-assigned groups, graded feedback. PFs. 25% lecture</td>
<td>SAME as LS-S</td>
</tr>
</tbody>
</table>

Table 1: Comparing resources available and pedagogy used in the different classrooms

Source: Dr. Sushilla Knottenbelt, *The Effects Classroom Environment on Student Learning*; Poster, 2014. Department of Chemistry and Chemical Biology, University of New Mexico.
Proposal to Teach in a Studio Classroom at UNM
University of New Mexico Learning Environments Committee
Office of the Registrar • Center for Teaching Excellence • Information Technologies

To help us better understand how your vision for the course fits with UNM’s common goals for teaching in a studio classroom, please tell us how you plan to include any or all of these goals in your use of the space:

☐ Maximizing learner time-on-task
☐ Providing immediate learning-progress feedback
☐ Supporting peer collaborative learning
☐ Improving the pass rate and grade achievement in courses
☐ Increasing instructor access for students
how faculty learn to use the studios

Workshops

Literature

The University of New Mexico STEM Gateway Program is funded through a U.S. Department of Education TITLE V grant, 2011-2016 (total anticipated funding $3.82 Million)
Learning Studio Community of Practice (LSCoP)

Mission: To provide a forum for developing, sharing and curating knowledge across mutual interests in active learning, student engagement, assessment of learning, and teaching in the learning studio environment.

Co-Coordinator: Dr. Aurora Pun, Earth & Planetary Sciences

Co-Coordinator: Dr. Sushilla Knottenbelt, Chemistry and Chemical Biology

Teachers teaching teachers
online discussion board

STEM Gateway has developed a survey instrument that helps instructors assess the teaching and learning experience in the Learning Studios. You can view the demo student survey by following the link below:

https://esurvey.unm.edu/opinio/s?s=22662

*Please do not distribute this link to your students. Instructors will be issued custom links for their course(s).

Please respond to the following questions on this discussion board:

1) Would you like to administer this survey in your course near the end of the semester? Please indicate the course(s) you would like the survey to be administered in.

2) Are there questions that you want revised or added to the survey?

3) Do you have any questions, comments, or concerns regarding the survey?

Group or teams in the studios:

Should we have teams in the learning studios? Should teams be set or allow students to self-select? How do you decided on the team members? What size of team works best? How often to change teams? How to facilitate team work? How to deal with dysfunctional teams? How to deal with drops mid-semester? How to ensure that all members of a team are engaged and learning? When giving grades for group work, how to avoid 'hangers on'? What happens when students 'tune out'?

How do we use studios efficiently with and without support from TAs/Peer learning facilitators (PLFs)? How do we most effectively use Peer Learning Facilitators in and outside the classroom? What techniques do you use to end group discussion and bring the room back to listening to the instructor? How do we use the technology to facilitate learning?
Question #3

Which of the following would you most want to see as an improved outcome?

A. Better passing rates
B. More positive student experience
C. Increased learning gains
D. Better attendance
data from UNM's Learning Studio

surveys and learning gains
Positive Student Perceptions

Fig. 7: The classroom in which I am taking this course....

- Nurtures my learning styles
- Engages me in the learning process
- Helps me develop connections with my classmates
- Makes me want to attend class regularly
- Encourages me to actively participate
- Enriches my learning experience
- Develops professional skills that can be transferred to the real world
- Increases my excitement to learn

% of students

"The learning studio actually requires me to apply my learning while in normal classrooms, I would just be required to listen to the lecture without any sort of interactions with anyone."

"There are many more opportunities for direct interaction with the TAs and professor. We have to collaborate with our specific teams every class period, as well as our table. It encourages us to form bonds, and we learn from each other."

Source: Dr. Sushilla Knottenbelt, The Effects Classroom Environment on Student Learning; Poster, 2014. Department of Chemistry and Chemical Biology, University of New Mexico. STEM Gateway Learning Studio Data.
Positive Student Perceptions
...in four courses surveyed...

Student Attitudinal Data

- Enriches my learning experience
- Increases my excitement to learn
- Helps me develop connections with my classmates
- Helps me develop professional skills that can be used in the real world

Number of Students

Data from STEM Gateway Learning Studio Data, Fall 2013 and Spring 2014
N = 507
Greater Conceptual Gains

Source: Dr. Sushilla Knottenbelt, *The Effects Classroom Environment on Student Learning: Poster*, 2014. Department of Chemistry and Chemical Biology, University of New Mexico.
Higher Final Grades

...and Pass Rate increased from 78% to 90%

Fig. 6 Components of the final grade in General Chemistry II LH in Spring 2013 and LS-L Spring 2014.

Source: Dr. Sushilla Knottenbelt, The Effects Classroom Environment on Student Learning; Poster, 2014. Department of Chemistry and Chemical Biology, University of New Mexico.
What did the Faculty think?

<table>
<thead>
<tr>
<th>Disagree</th>
<th>Agree</th>
<th>The classroom in which I teach the course...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td>Enriches the teaching experience.</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>Increases my excitement to teach.</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>Helps me develop connections with my students.</td>
</tr>
</tbody>
</table>

Invigorating... energizing... a chance to feel like you're truly facilitating and guiding learning at almost every moment rather than teaching from behind a podium and never really knowing what is being learned.

"Much more student centered, with more students actively engaged until the end."

It's a better spatial layout, where you're not in front, 'on the stage', but are a member of the classroom group.
Positive Learning Experience in Learning Studios

* Students say more work than regular sections, but worth it if you want to learn.
* Improved understanding of main concepts
* Problem Solving on Tests as good or better than lecture sections
* Attendance > 85% (most classes > 90%)
* Overall failure rate is 1/2 the rate in lecture sections (NCSU, UCF, MIT, & RIT)
* Failure rate for women and minorities less than 1/3 rate in regular sections (NCSU)
* Outside Observers find SCALE-UP students ask more thoughtful questions than students in regular classes
• Overall failure (DFW) rate of early SCALE-UP physics adopters is 50% or better the rate in lecture sections in the same department (NCSU, UCF, MIT, & RIT).

• NCSU reports even better results for underrepresented minorities
Traditionally, in large lectures, you do what is possible to do in front of 500 people, not because it's what you should do. Now we're asking the question: *What do we really want our students to learn...*

- Peter Dourmashkin (MIT TEAL learning studio faculty)