Data Driven Design Decisions

Overview

- About MKThink
- Why Use Data?
- Analysis Process
- Example 1:
 Arlington Public Schools
 Occupancy and Utilization
- Example 2: San Francisco Unified School District School Lunch Supply Chain
- Example 3
 Hawai'i Department of Education
 Energy Systems Study

MKThink

Why Use Data?

Data can be used to simplify and model complex systems.

Data can reveal patterns and can be used to do comparative analysis.

Data can help us make better decisions based on proof.

New Websites

570

New websites are created every minute.

820,800

New websites are created every day.

299,592,000

New websites are created every year.

Data Centers

6,000

Number of football fields equivalent to the area of all the world's data centers.

7,920

Number of acres of land used to house all the world's data centers.

345,600,000

Square feet of building space dedicated to all the world's data centers.

Digital Universe

70,000,000,000,000,000,000

Rough estimate of the number of stars in the observable universe.

82,000,000,000,000,000,000

Number of Bits of information stored in the digital universe.

Digital Breadcrumbs

204,000,00

Emails sent every minute.

1,800,000

Facebook likes every minute.

278,000

Tweets sent every minute.

Projected Growth of Data

Global Data (in zettabytes)

1 zettabyte = 1,000,000,000,000 gigabytes

The New Economy. "Big Data Is Not Without Its Problems." January 8, 2015.

Projected Growth of Data

Global Data (in zettabytes)

1 zettabyte = 1,000,000,000,000 gigabytes

The New Economy. "Big Data Is Not Without Its Problems." January 8, 2015.

Signal or Noise?

"There isn't any more truth in the world than there was before the Internet or the printing press. Most of the data is just noise, as most of the universe is filled with empty space."

Nate Silver

Silver, Nate. The Signal and the Noise: Why Most Predictions Fail - but Some Don't. London: Penguin Books Ltd., 2012. Print.

Central Challenge

How can we harness data and cut through the noise, to help us make better decisions about facilities planning and capital investments?

Ask the Right Question

- In order to get to the best solution, it is imperative to start by asking the right question
- Sometimes our clients already have a question in mind, but sometimes we need to work with them to adjust the focus and/or intent of the question

Create Analytical Framework

- Identify all the important components of the system in question and define the relationships between system components
- Analytic framework is based off of system model and is the structure for relational database
- Developing the analytic framework is a qualitative, design exercise

Identify Necessary Data

- Identify data points necessary to define the system components
- Identify authoritative data sources
- Determine appropriate collection methods

Self Reported

Run Analysis

- Scrub and format datasets
- Enter datasets into relational database and flesh out data model
- Run analysis on collected data using analytical framework

Answer Question

- Identify key findings from data analysis
- Reflect on original question based off of key findings and initial conclusions
- Develop a set of options or scenarios to respond to the question at hand
- Identify tradeoffs for each option by testing sensitivity of variables

Examples

Finding the Right Question:

Arlington Public Schools

Occupancy and Utilization

Building a System Model:

San Francisco Unified School District

Supply Chain Consolidation

Collecting the Right Data:

Hawai'i Department of Education

Thermal Comfort and Heat Abatement Research

Asking the Right Question

Arlington Public Schools

Occupancy and Utilization

Project Context

Arlington Public Schools

- 13th Largest school system in Virginia
- 2013-14 Enrollment was 23,316 students
- Enrollment has grown by 3,782 students since 2008, and average of 3.8% per year
- Enrollment is projected to grow by another 3,300 students by 2018-19 school year
- Increase in enrollment will affect all grade levels but will have the greatest impact on high schools

Asking the Right Question

Arlington Public Schools

Data Seen By Client:

Census Projections Enrollment Projections

Original Question:

"Where should we build a new building?"

Data Seen By Client:

Real Estate Availability Classroom Loading Facility Capacity

Modified Question:

"How might we better utilize our existing buildings?"

Developing Analysis

Arlington Public Schools

- Identified all the aspects affecting occupancy and utilization for APS middle and high schools
- Determined which components were important to model

Data Collection

Arlington Public Schools

| Prest | Room 10| | Asia | Start Time | Solidor Year | Use Prest | Room 10| | Control (control (contr

- Collected classroom scheduling data, classroom occupancy per period, and facilities level data to assess occupancy and utilization
- Overlaid all analysis on facilities floor plans to understand how occupancy changes spatially over time

Occupancy Analysis

Arlington Public Schools

all content is proprietary

- Developed data model to describe the components defined in system/ supply chain model
- Evaluated various scenarios based on model inputs and assumptions

Recommendations

Arlington Public Schools

- Utilize unscheduled spaces to increase capacity at peak periods of the day
- Further develop and utilize professional learning centers (PLCs) to have teachers share classrooms and increase capacity, occupancy, and utilization of classrooms across the district
- Do not build a new building prior to attempting to optimize classroom occupancy through operational changes

Building a System Model

San Francisco Unified School District

Supply Chain Consolidation

Project Context

San Francisco Unified School District

- Student Nutritional Services Division engaged with IDEO to develop design recommendations to improve the school food experience
- SFUSD currently serves 10,170 meals per day, capturing about 40% participation of enrolled students
- Visited 105 school sites to inventory kitchen and dining facilities and equipment
- Developed scenario model to test viability of regional and central kitchen strategies

Asking the Right Question

San Francisco Unified School District

Data Seen By Client:

IDEO Design Recommendations Design Solution Financial Model

Original Question:

"Where should we build three regional kitchens?"

Data Seen By Client:

Operations/Supply Chain Facilities Data

Modified Question:

"Where should we build three regional kitchens, or one central kitchen?"

Building a System Model

San Francisco Unified

- Worked with district staff to develop a system model of the district's food supply chain and meal production system
- Identified datasets relevant to each component of the supply chain and started filling in the information with existing data
- Defined approach for collecting all remaining data points

New equipment (Cost/Expense)

Data Collection

San Francisco Unified School District

AND RECOMMENDATIONS

TO DEVELOP STRATEGIC

SCENARIOS

- Digitized data collection forms to streamline collection process
- Dispatched data collection teams to 105 school sites to assess and record equipment and facilities data

AND ENTIFY PATTERNIS AND

CETTUNITIES

Modeling and Analysis

San Francisco Unified School District

- Developed data model to describe the components defined in system/ supply chain model
- Set assumptions for unknown or projected variables
- Evaluated various scenarios using key metrics

Modeling and Analysis

San Francisco Unified School District

Right Analysis

Model Inputs and Assumptions

Model Sensitivities

- Defined model assumptions with client to team assure alignment with SNS and district goals
- Determined sensitivities of various model parameters

Recommendations

San Francisco Unified School District

- Assessed value of various scenarios over a ten year time period
- Used model results to recommend the development of a phased regional kitchen strategy or a single central kitchen strategy

Collecting the Right Data

Hawai'i Department of Education

Thermal Comfort and Heat Abatement Research

Project Context

Hawai'i Department of Education

- Collect data pertaining to building assets, energy usage, comfort level, and financials from the Campbell, Ilima, Kaimiloa, and Pohakea campuses through field installed instrumentation and on-site observation
- Identify opportunities for improvements in energy consumption, comfort levels, and overall economics associated with comfortable learning environments
- Develop various scenarios and options through to create a draft strategic plan to guide future physical building modifications

Asking the Right Question

Hawai'i Department of Education

Data Seen By Client:

Feedback from students, families, and teachers Temperature Data

Original Question:

"Students are uncomfortable so we need to lower the temperature so we need air conditioning, how are we going to pay for it?"

Data Seen By Client:

Fuel/Operating Costs
Installation Costs

Modified Question:

"Students are uncomfortable, how do we improve thermal comfort?"

Building System Model

Hawai'i Department of Education

- Defined asset, resource, and cultural variables associated with Thermal Comfort
- Mapped the relationships between variables

Collecting Relevant Data

Hawai'i Department of Education

Site Attributes:

Surrounding Ground Material

% Grass

% Dirt

% Paving: Concrete

% Paving: Asphalt

% Shaded by Trees

% Shaded By Other

Building Orientation

Roof Color

Façade Orientation

Floor Level

Construction Material

Building Color

Façade Attributes:

% of Fenestration

% Operable

% Glazing

% Louver

% Other

Window Type

Location of Windows

Depth of Overhang

Collecting Relevant Data

Hawai'i Department of Education

Interior Environment:

Temperature Mean Radiant Temperature Relative Humidity

Illuminance

CO₂ Levels

Sound

Air Quality:

 CO_2

CO

 NO_2

Energy Monitoring:

Wattnode

Pulse

Current

Outdoor Environment:

Temperature Relative Humidity Wind Speed / Direction

Data Analysis

Hawai'i Department of Education

 Compare Asset, Resource, and Cultural datasets across all monitored classrooms

Data Analysis

Hawai'i Department of Education

Room O102	
Orientation	SE
% Fenestration	25%
% Operable	100%
% Glazing	-
% Louver	100%
Windows Type	Ribbon
Depth of Overhang	8'
Ground Material	Asphalt
% Grass	5%
% Dirt	5%
% Concrete	-
% Asphalt	90%

Room O104	
Orientation	SW
% Fenestration	25%
% Operable	100%
% Glazing	-
% Louver	100%
Windows Type	Ribbon
Depth of Overhang	8'
Ground Material	Grass
% Grass	80%
% Dirt	-
% Concrete	20%
% Asphalt	-

 Isolate specific attributes by identifying similar classrooms

Data Analysis

Hawai'i Department of Education

Average Temperature Min / Max Ground Material Room O102 82.3°F 72.6° / 88.2° Asphalt

Room O104		
Average Temperature Min / Max	80.6°F 73.3° / 86.0°	
Ground Material	Grass	

Assess the affects of isolated attributes on interior classroom environments and on the perceptions of thermal comfort by classroom occupants

Recommendations

Hawai'i Department of Education

- Design, implement, test, and evaluate the effectiveness (both cost- and technical effectiveness) of passive and mechanical heat abatement and increased ventilation strategies (e.g. nocturnal flushing, white roofs, mechanical cooling, sun shading, etc.)
- Measure the change in interior environments and the change in perceptions of thermal comfort as related to each implemented strategy
- Develop a system-wide thermal comfort master plan to determine which strategies to deploy at which buildings at which school sites

