A Look at School Buildings with Resilience in Mind

Presented by:

Todd Hanger | AIA, LEED AP BD+C, Megan Saunders | LEEP AP BD+C Mark Madorsky | P.E., CXA, LEED AP BD+C PBK DGG ENGINEERS APBI(COMPANY

April 7, 2018

"A Look at School Buildings with Resilience in Mind"

- Educational Facilities are asked to serve our communities in many ways.
 - Operational 24/7/365
 - Provide Next Generation learning opportunities
 - Provide physical and mental health and well-being
 - Community experiences within the arts, sciences and competition sports
 - Critical Facilities that provide shelter and rescue from natural and manmade disasters

"A Look at School Buildings with Resilience in Mind"

Learning Objectives:

- 1.Steps towards a threats and hazards assessment
- 2.Resilient design strategies for building systems
- 3. Resilient design strategies for site and building design
- 4. Resilient design strategies for human health and well-being protection

Resources

C3 Living Design Project - RELi U.S. Green Building Council (USGBC) **Envision - Institute for Sustainable** Infrastructure **Zofnass Program for Sustainable** Infrastructure (Harvard) 2030 Challenge / SB2030 International Living Future Institute **Living Future** Living Building Challenge Autodesk 2030 Palette: Design and Planning **Strategies Disaster Safety TornadoHistoryProject** Illinois State Geological | ISGS **Red Cross**

FEMA P-320, Taking Shelter from the Storm: Building a Safe Room ASCE – PRISM Infrastructure Resilience FEMA P-361, Safe Rooms for Tornadoes and Hurricanes FEMA-428, Design Safe School Projects in Case of Terrorist Attacks and School Shootings Financial System Resilience Index (NEF) IBC 2015 – International Building Code ICC 500-2014: ICC/NSSA Standard for the Design and Construction of Storm Shelters NFPA 909: Code for the Protection of Cultural Resource NFPA 13: Standard for the Installation of Sprinkler Systems **NIST Special Publication 1190 Community Resilience Planning Guide**

ASCE 7-10 American Society of Civil Engineers (ASCE) 2010. Minimum Design Loads For Buildings and Other Structures.

ASCE 24-14. Flood Resistant Design and Construction.

FEMA P-750 NEHRP Recommended Seismic Provisions for New Buildings and Other Structures FEMA P-55. Coastal Construction

Manual

FEMA P-908. Mitigation Assessment **Team Report**

ICC 500 ICC/NSSA Standard for the Design and Construction of Storm Shelters.

IRC International Residential Code. **NOAA** National Weather Service, National Hurricane Center.

Resilient Design & shared attributes

<u>Resilience</u> = a unified preparedness to withstand, adapt and recover from Shocks and Stresses

- **Shocks =** Short-term Threats & Hazards (natural and man-made)
- **Stresses** = Long-term Adversities (generational)

Project viewed as a diverse system of systems Ability to bounce back from adversities Ability to thrive forward through

- Learning
- Adapting
- Changing

Shocks: short-term threats & hazards

	Natural	Technological	Human-Caused
Avaland	che	Airplane crash	Biological attack
Animal	disease outbreak	Dam Failure	Chemical attack
Drough	t	Levee Failure	Cyber incident
Earthqu	Jake	Mine accident	Explosives attack
Epidem	nic	Hazardous materials release	Radiological attack
Flood/F	lash Flooding	Power failure	Sabotage
Hurrica	ne	Radiological release	Active shooter
Landsli	de	Train derailment	
Pander	nic		
Tornado	0	Urban conflagration	
Tsunam	ni		
Volcani	c eruption		
Wildfire)		
Winter	storm		

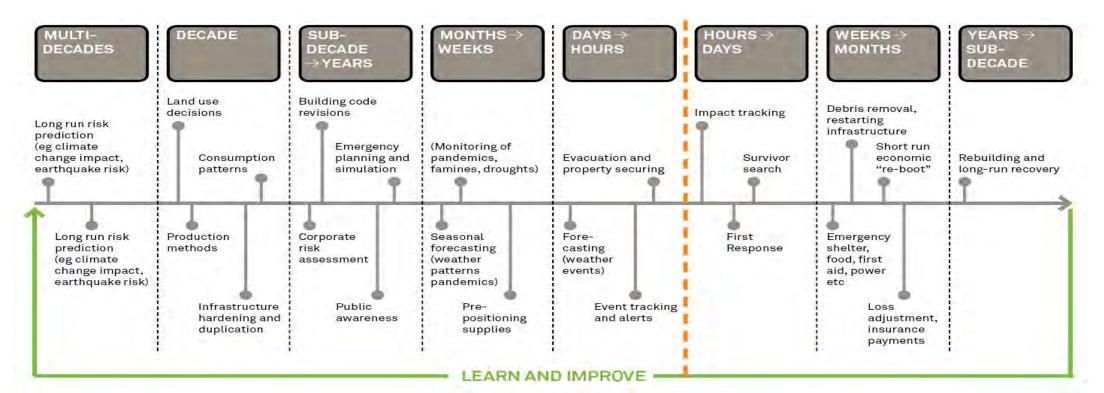
Stresses: Long Term Adversity & Hardship

Natural	Technological	Human-Caused
Climate Change	Hazardous materials release Historical power failure Radiological release Aging Infrastructure	Decreasing population/Unemployment Increasing population/Affordable housing Socioeconomic divisions

•Multiple Systems make up the Structure for the whole project.

•The interactive relationships between multiple system elements and the holistic system enable a project to achieve resilience.

Integrative Design Approach


- •View project as a living-system
- •Redundancy and diversity
- •Assemble the best team (co-learners)
- •Engage the Owner (Goal Setting Session)
- •Align around common goals
- •Pick a Performance Metric
- •Looking at Cost and Schedule
- •Research
- Look for synergies
- •Maximizing efficiencies and decision making

Resilience is a process

Resilient Design & shared attributes

- How can educational facilities become resilient contributors within their community?
- What are the core concepts for designing a resilient building?

Task #1 – IDENTIFICATION & ASSESSMENT

- Identify relevant Shocks Threats & Hazards (deliberate and natural)
- Identify relevant Stresses Long-term adversities
- Assemble a Threats & Hazards Assessment

Task #1 – IDENTIFICATION & ASSESSMENT

How do we do this? Use your resources:

https://www.fema.gov/national-preparedness-system (national preparedness- CPG 101) https://www.fema.gov/national-preparedness-system (national preparedness- CPG 201) www.disastersafety.org (natural shocks) www.fema.gov (flood risk maps) http://www.noaa.gov/ (floods, tornados, hurricanes, earthquakes) https://gacc.nifc.gov/ (USDA – wildfires) www.airnow.gov (EPA) http://www.tornadohistoryproject.com/tornado/Texas/2016/map \leftarrow \rightarrow \circlearrowright \land \land \land \land https://disastersafety.org/

Discover the risks you face.

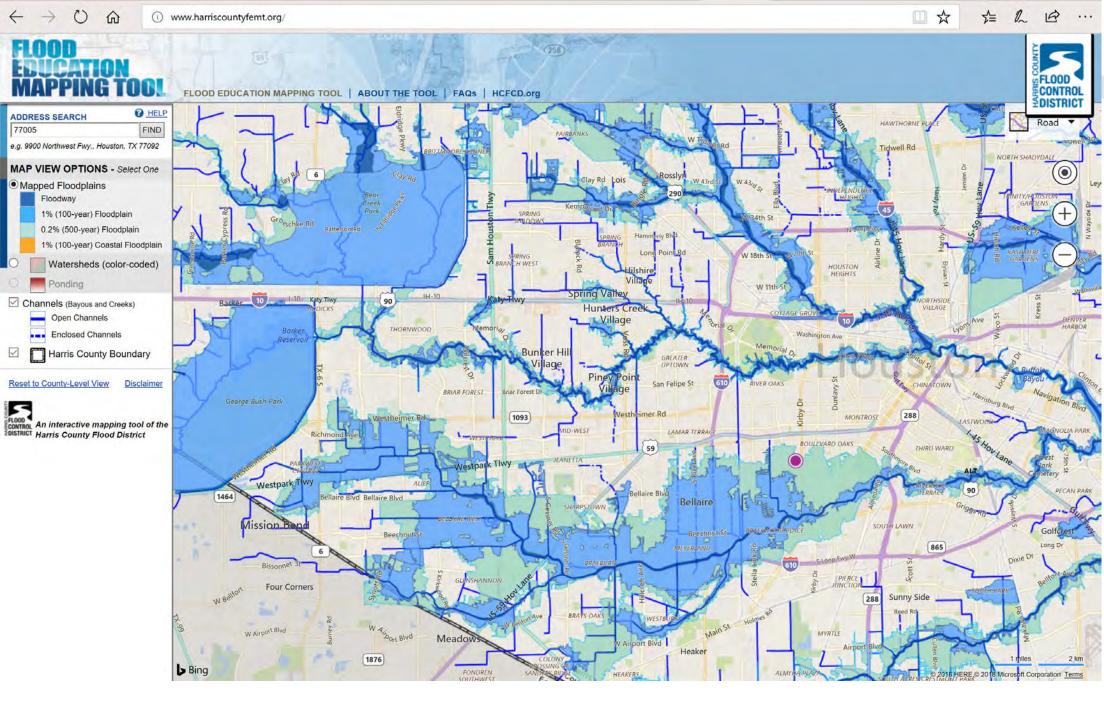
AB

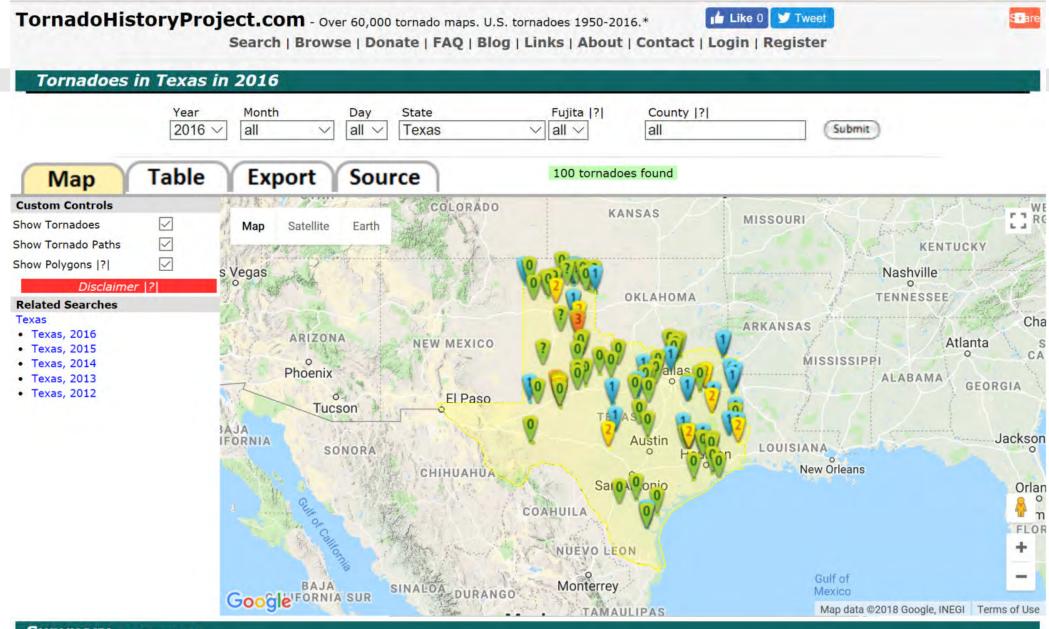
Click your state on the map or enter your Zip Code below.

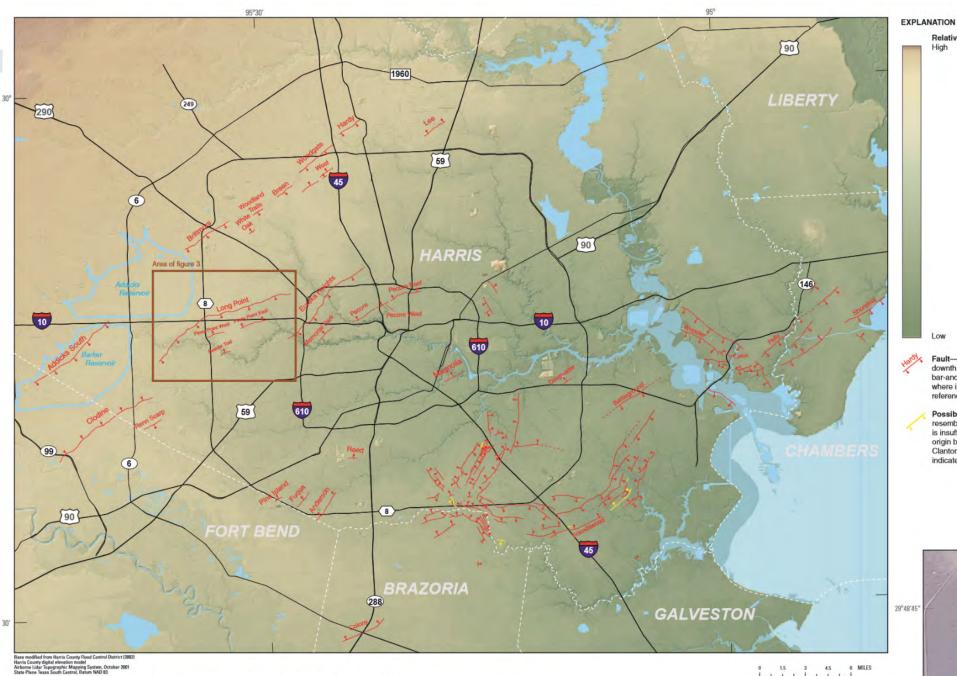
77005	60
11005	GO

Results highlighted below \clubsuit

THIS IS A RISK YOU FACE IN YOUR AREA


THIS IS A RISK YOU FACE IN YOUR AREA





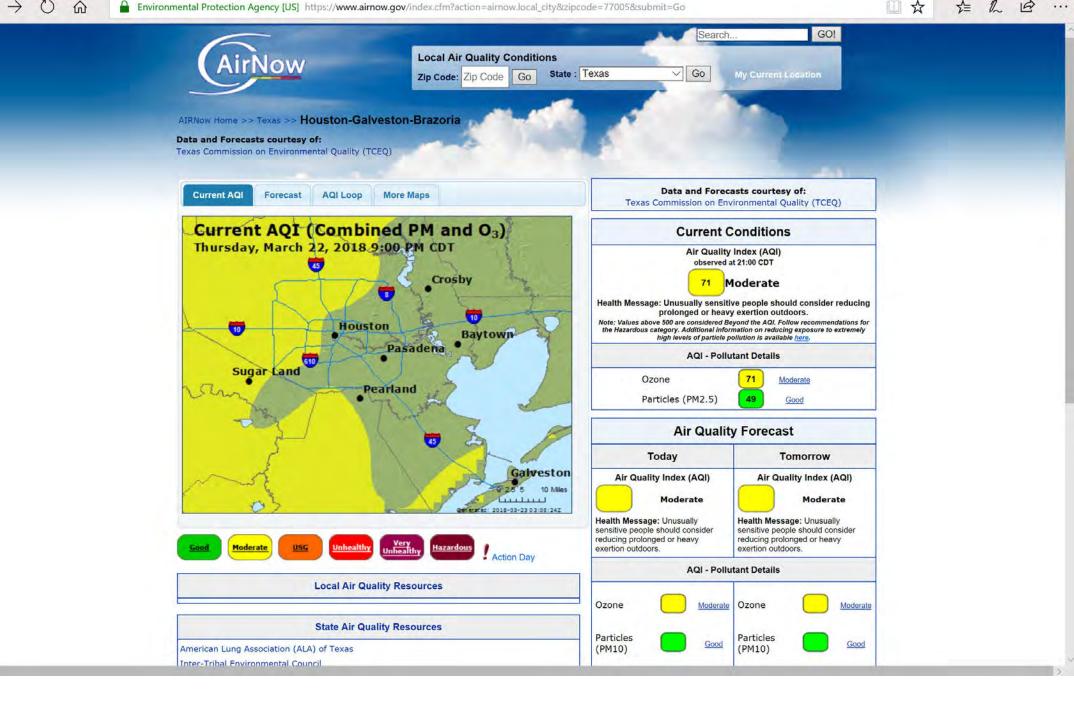
Date(s) (yyyy-mm-dd)	Tornadoes	Fatalities	Highest Fatalities	Injuries	Highest Injuries	Longest Path	Widest Path
----------------------	-----------	------------	--------------------	----------	------------------	--------------	-------------

User Comments (0)

IN COOPERATION WITH THE HARRIS-GALVESTON COASTAL SUBSIDENCE DISTRICT

Low

Fault—Documented fault with downthrown side indicated by bar-and-ball symbol (dashed where inferred). Fault name referenced in table 1


Relative altitude, above NAVD 88

High

Possible fault-Feature that resembles a fault, but evidence is insufficient to establish an origin by faulting (Verbeek and Clanton, 1978). Downthrown side indicated by bar-and-ball symbol

Figure 2. Principal faults in the Houston metropolitan area as observed from 15-foot bare-earth Lidar-derived digital elevation model (DEM).

NFPA Threats Assessment

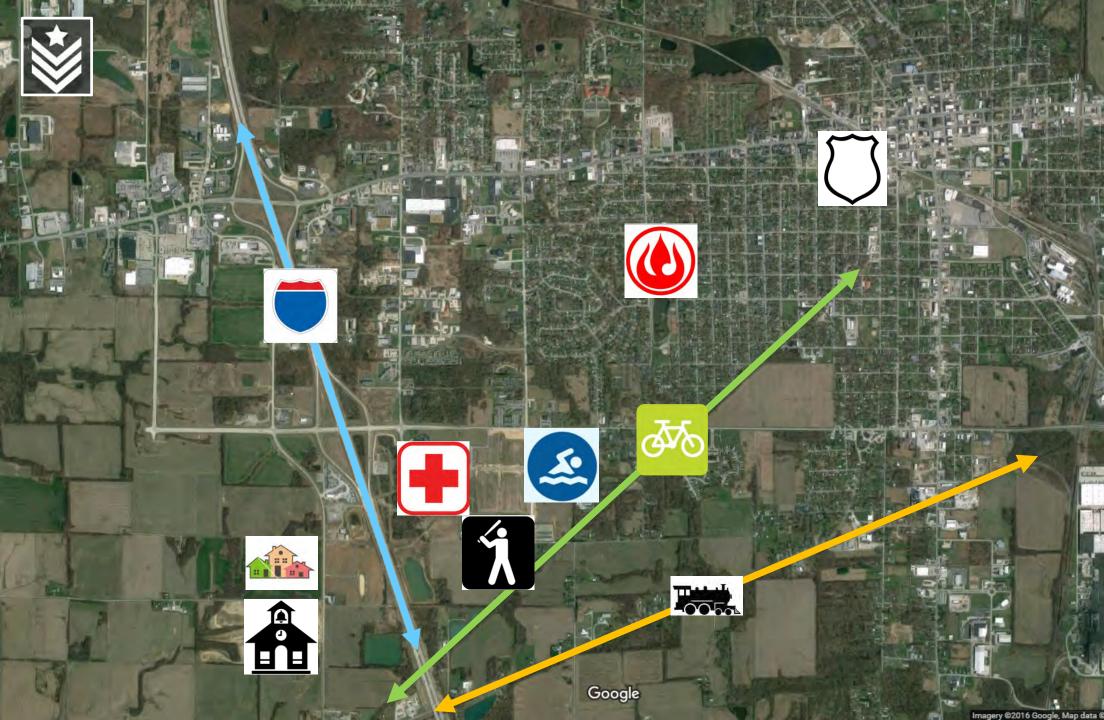
POTENTIAL THREATS ASSESSMENT

	N/A	Likeli Low	hood of Occu Moderate	irrence High	Potential Severity Low Moderate High					
Unintentional Act	18/24	Low	moderate	High	Low	moderate	High			
Fire/explosion										
Health emergency										
Hazardous material spill or release										
Transportation accident										
Intentional Act										
Terrorism										
Cyber attack										
Arson										
Theft		<u> </u>	<u> </u>	- <u> </u>			_			
Vandalism						Ē				
Sabotage				- <u>a</u> < 1	~ _					
Civil disturbance, public unrest, mass hysteria, riot										
Strike										
System Failure										
Loss of electricity										
Water leak										
Building collapse/structural failure			-							
Fuel shortage										
Communications system interruption			—							
Air/water pollution contamination										
Water control structure, dam, or levee failure										
HVAC system failure										
Loss of protection systems										
Geological										
Earthquake										
Tsunami										
Volcano										
Landslide/mudslide										
Biological										
Pandemic disease										
Animal or insect infestation										
Meteorological										
Flood, flash flood, seiche, tidal surge										
Drought										
Wild fire (forest, range, urban)										
Snow, ice, hail, sleet, avalanche				. 🗆						
Windstorm, tropical cyclone, hurricane, tornado, water spout, dust/sand storm										
Extreme heat/cold										
Lightning										

• What is the likelihood of occurrence?

- Historical Data
- Prevalence

• What is the potential severity?


- Overall impact
- Disruption to critical infrastructure
- Recovery

NFPA 909, Code for the Protection of Cultural Resource Properties - Museums, Libraries, and Places of Worship

Task #2 – CONTEXT & EFFECTS

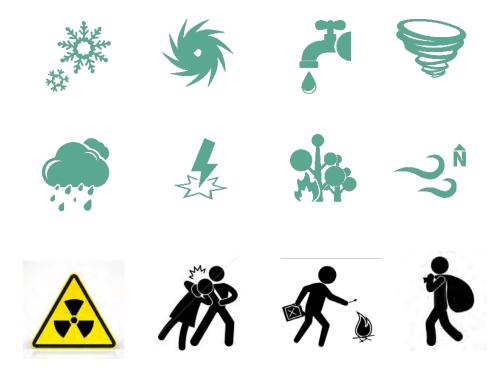
- Describe Threats & Hazards of concern, showing how they may affect the community
- What are the different impacts depending on the time, place, and conditions?
- What have been past experiences with threats and hazards?
- How might future experiences with threats & hazards differ due to changes in demographics, climate, and the built environment?
 - What is the estimated recovery time?
 - Past experiences
 - Recovery sequence

- What is the estimated cost?
 - Materials to restore & adapt
 - Manpower

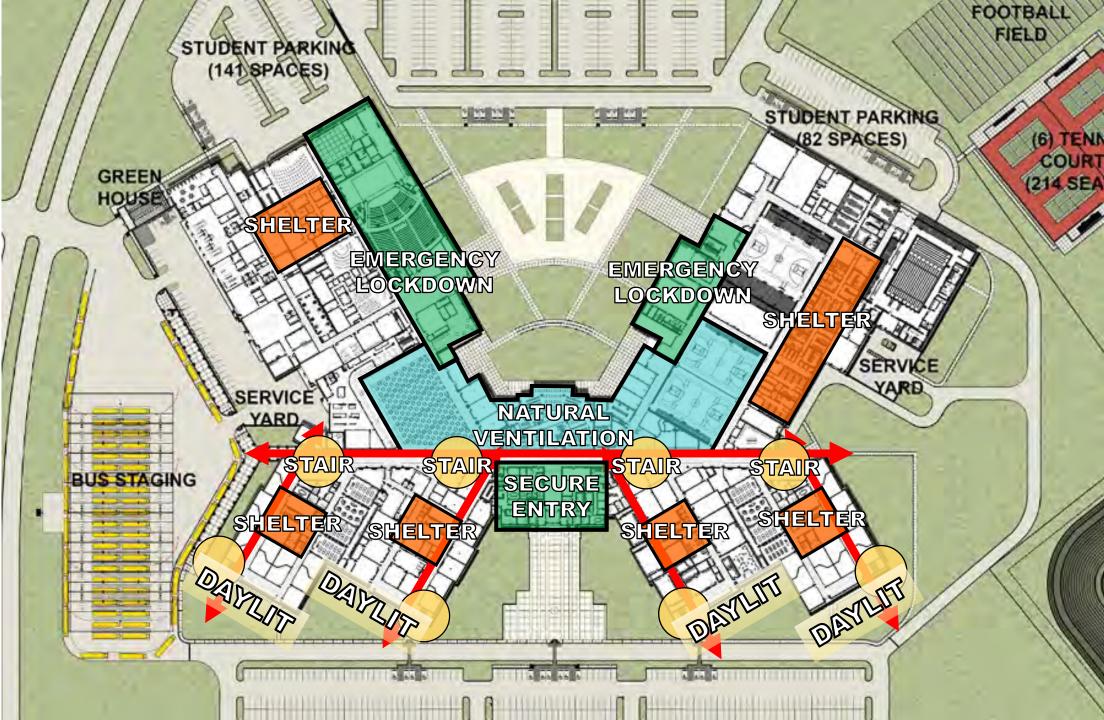
SHOCK	STRESS	LIKELI- HOOD (1-3)	IMPACT (1-3)	RECOVER TIME (hrs-days)	COST (1-3)	IMPORTANCE FACTOR (1-3)
Flooding		3	3	14 days	3	3
Earthquake		1	1	~	1	1
Tornado		1	2	30 days	2	2
	Air Pollution	2	2	~	2	2
Electricity Loss		1	1	4 hrs	1	1
Cyber Terrorism		1	2	24 hrs	2	2
Intruder		1	3	8 hrs	3	3
	Social Division	3	3	~	3	3

Task #3 – TAKE ACTION

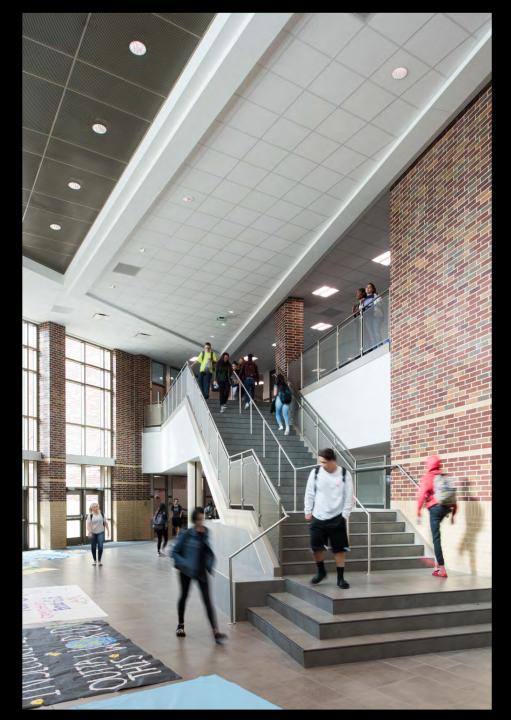
- Strategies for Existing Buildings
- Strategies for New Construction


Prevention, Protection, and Mitigation / Response and Recovery

Emergency Preparedness Planning


For Common Hazards and Extreme Events

- Develop Emergency Operations Plan (EOP) that outlines actions to be taken in the event of a crisis
 - Fire/Evacuation
 - Lockdown during acts of violence
 - Tornado/Severe Weather
 - Shelter in Place
 - Reverse Evacuation
- Communications
 - Emergency alert systems & Tornado sirens
 - Wi-Fi & Cellular networks
 - Radio
 - P.O.T.S. Phone
 - Satellite Phone


(The ability of a community to accelerate the recovery process begins with its efforts in pre-disaster preparedness)

Preferred Sites

Flood plain

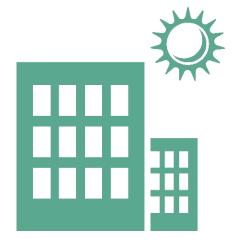
- Avoid sites located in the 100-year flood plain
- Protect critical structures from the 500-year flood elevation
- Provide flood protection for existing buildings below 500-year flood elevation
- Avoid Coastal Zones inundated by 2'-6" of sea level rise or greater
- Locate electrical and mechanical equipment above the 500-year flood plain

Site Geology, Ecology, Biodiversity

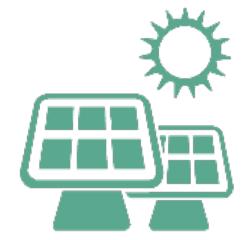
- Avoid developing on green field sites
- Avoid sites located in environmentally sensitive areas
- Avoid sites with fault zones
- Prevent surface/ground water contamination (reduce pesticide/fertilizer reliance)
- Protect or Restore native habitats
- Protect or Restore/Create species biodiversity

Quality access to essential community operations and amenities

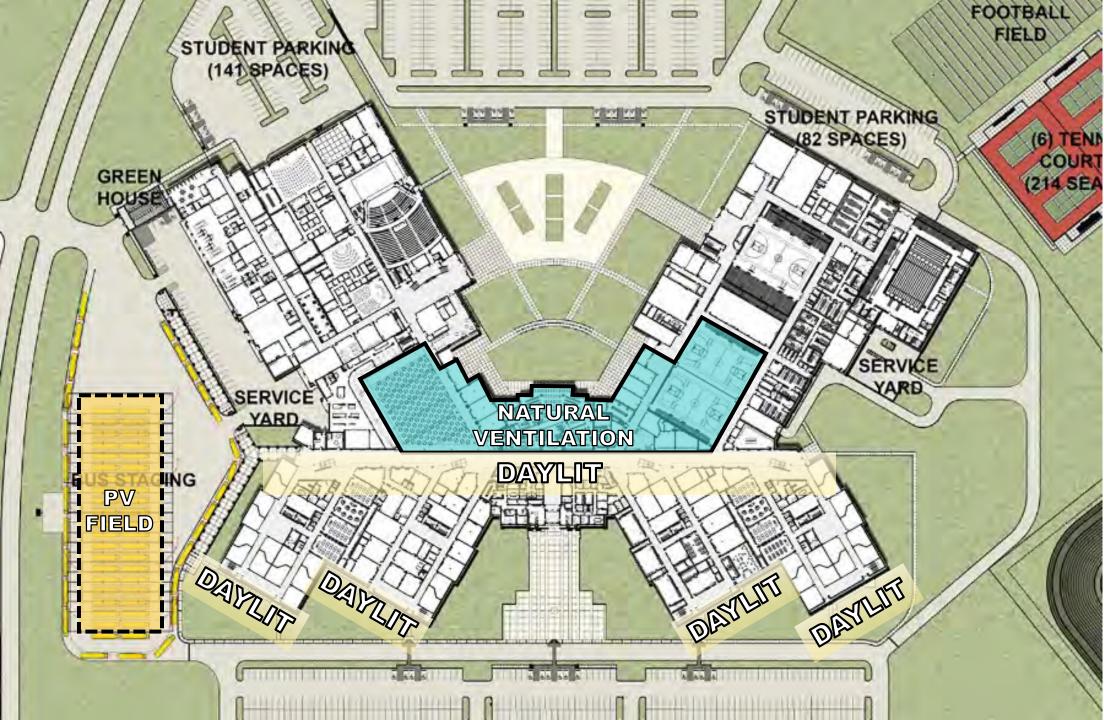
- First response
- Multiple points of access
- Multi-modal transportation


Site Selection

	_						_	F	-						_			1275%	
		LAND	соѕт		ARED	oors	JCe	SS	U	UT	ILIT			t Fit	aphy	lain	res	a	Ranking
SITES	Size	Cost	Cost / Acre	Facilities	Curriculum	Neighbors	Distance	Access	Electric	Gas	Data	Sewer	Water	Project Fit	Topography	Flood Plain	Features	Score	Ran
. E. Bishop Rd.	62	\$1,566,700	\$25,269	None	None	None	3	Tertiary	*		1.2	-		-	Flat	None	Stream	1.10	9
. Veterans Dr.	70	\$3,500,000	\$50,000	None	None	None	2	Primary	3-ph	4H	Laur	8	10	2	Flat	None	None	1.88	5
. N Cactus Lane	58	\$2,030,000	\$35,000	Ball & Park	Hospital	Highway / Hospital	3	Second	3-ph	0	0	0	0	3	Slight	None	None	1.61	6
. 11255 N Sparrow Lane	119	\$2,000,000	\$16,807	None	None	None	4	Tertiary	21	+		140		-	Slight	Adjacent	River	0.90	15
. O Tolle Lane	56	\$340,000	\$6,071	None	None	Rail/Airport	2	Primary	3-ph	4H	cable	8	6	2	Flat	Adjacent	Stream	2.06	3
. 11251 E Ambassador	48.5	\$1,700,000	\$35,052	None	None	Rail/ Highway	3	Primary	÷	÷	-	÷	(A	-	Flat	None	Lake	0.86	16
22 Fairway Drive	78	\$950,000	\$12,179	None	None	None	2	Tertiary		-	- e -	-		-	Rolling	Flood Way	Lake	0.98	11
. 42n & Richview Rd	71	\$700,000	\$9,859	None	None	Rail/ Highway	2	Primary	3-ph	10L	cable	8	6	2	Slight	Adjacent	None	2.25	2
. Wells By Pass	38	\$1,364,760	\$35,915	None	None	Rail/ Highway	3	Primary	-	÷		i.	æ	÷	Slight	None	None	0.98	1
0. E Violet Rd.	37	\$138,525	\$3,744	None	None	None	6	Tertiary		-		-	1	÷	Slight	Adjacent	None	1.12	8
1. County Farm Rd	77	\$246,400	\$3,200	None	None	None	4	Tertiary	- +÷		(1	-		÷	Rolling	Adjacent	None	1.14	7
2. Robin & Stratford	35	\$132,050	\$3,773	None	None	None	7	Tertiary	1			1.5	1.7	×.	Flat	None	None	1.06	10
3. 13235 E Oakton	40	\$120,000	\$3,000	None	None	None	4	Tertiary	÷	•	40	+		+	Hilly	Adjacent	None	0.94	13
4. N McCauley Lane	25	\$110,000	\$4,400	None	None	None	3	Tertiary	- 2	4	1.3	- 5	1.1	-	Hilly	None	None	0.92	14
5. Veterans Dr.	40	\$1,200,000	\$30,000 *	Ball & Park	Hospital	None	3	Primary	3-ph	4H	fiber	12	8	2	Flat	Adjacent	None	1.96	4
5. Wells By Pass	60	\$1,500,000	\$25,000	None	None	Rail/ Highway	3	Primary	3-ph	4H	fiber	12	8	2	Slight	None	None	2.41	1
7. Veterans Dr.	50	\$1,750,000	\$35,000 *	None	Hospital	None	3	Primary	3-ph	4H	fiber	12	8	2	Flat	Adjacent	None	1.98	4


Ranking	Size	Cost/Acre	Facilities	Curriculum	Dist.	Access	Elec.	Gas	Data	Sewer	Water	Торо	Flood Plain
3 55	\$10,000	Ball &	Hospital		Primary		4H	Fiber	12	12	Slight	None	
3	55	Park Pospilat 1 Prime	Primary		8M	Cable		12	Sugni	None			
2	70	\$20,000	Ball Fields		2	Second	3-ph	10L	TI	8	8	Rolling	Adjacent
1	50	\$30,000	Parking		3	Tertiary			DSL	6	6	Flat	Flood Way
0	45	\$35,000	None		4	None				4	4	Hilly	

Plan the Site

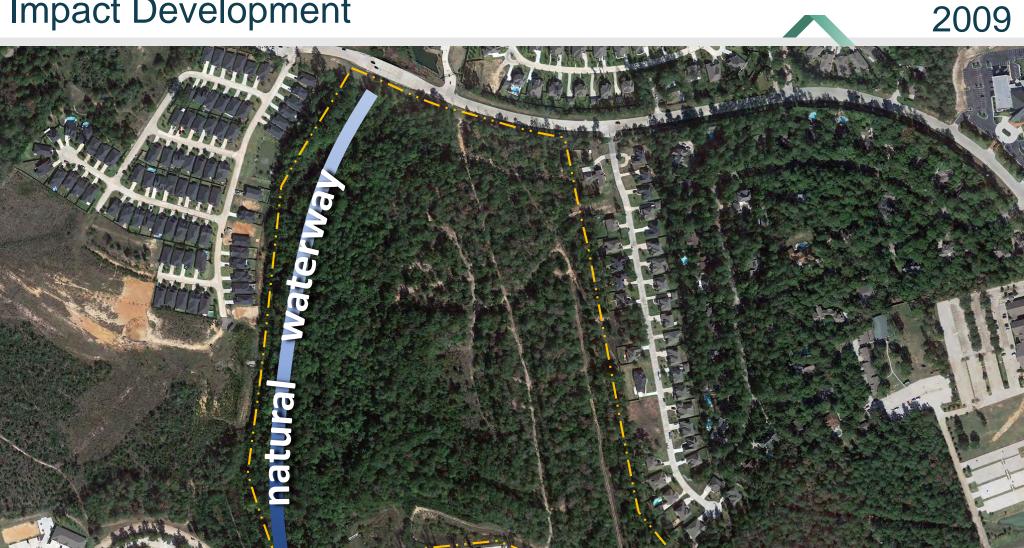

Building Orientation Passive/Active Solar Strategies

Carbon Neutrality

Low Impact Development



- Protect/Restore natural features & native habitats
- Protect/Restore natural drainage patterns
- Protect prime farmland and floodplains
- Provide native plantings to minimize pesticides and surface/groundwater contamination
- Storm Water Pollution Prevention Plan (SWPPP)
- Minimize site disturbances
- Minimize total impervious area
- Disconnect impervious surfaces
- Bioretention and engineered soils
- Bioswales
- Rainwater harvesting



Low Impact Development

Low Impact Development

Low Impact Development

Practice

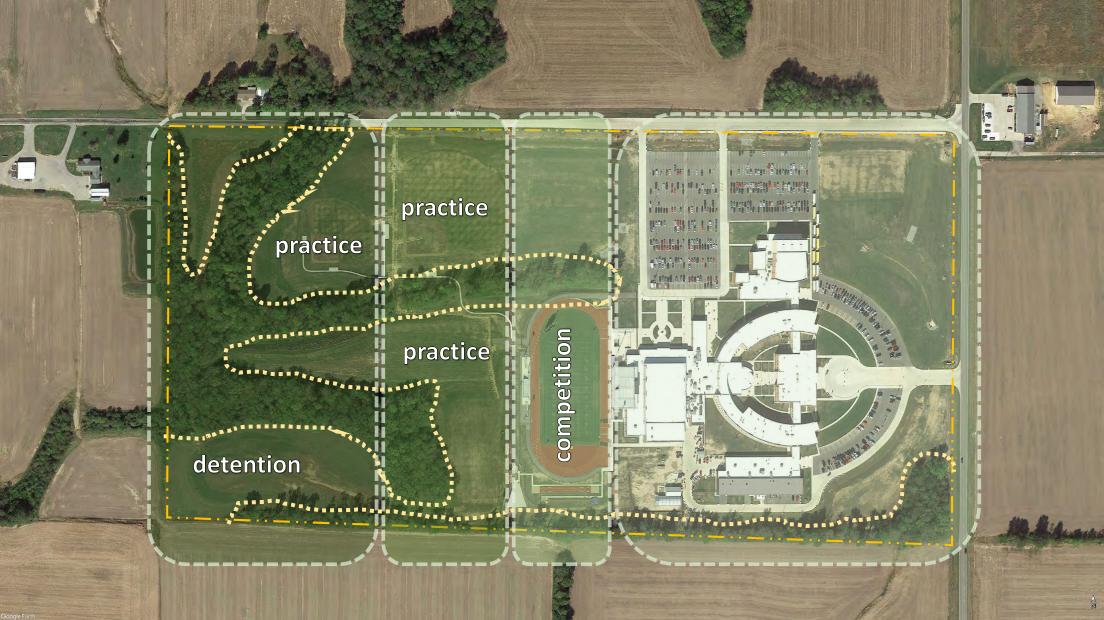
Detention

aterwa

D

Competition

2011


Low Impact Development

Low Impact Development

2016

Resilient Strategies

Elevated new building so that finish floor is 2' above 500-yr BFE (100-yr flood plain)

Proposed flood wall to protect the existing science wing

Provide artificial turf in the central courtyard

Resilient Strategies

Elevated electrical and mechanical equipment so that they are 2' above 500-yr BFE

601100 BE1188 681 186

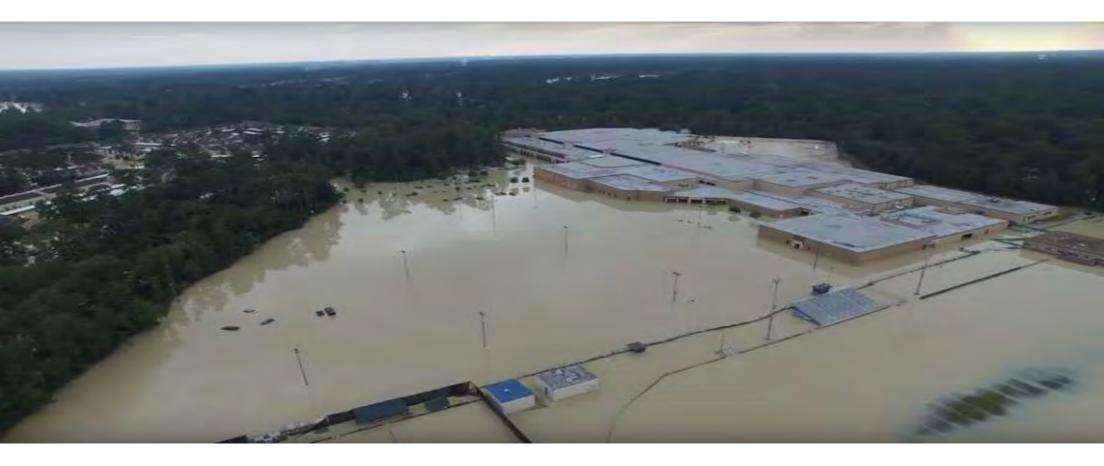
Proposed underground detention under the building and under the football field Parking garage

Resilient Strategies

is designed to flood

The Keys to a Resilient Building

- Mark Madorsky, P.E., CxA, LEED AP BD+C
- President
- LEAF Engineers


The Day Before...

Aerial Photo of a Flooded High School Site

Impact

- 623,967 square feet affected
- Sports Fields Inundated
- +\$50,000,000 repair contract
- Closed 8 months, portions 1 year
- Priceless Legacy Loss (trophies, banners, etc.)
- Disruption of Community Spirit

Resilient Strategies

within

RESILIENCY

Strengthening Structure

HARDENING

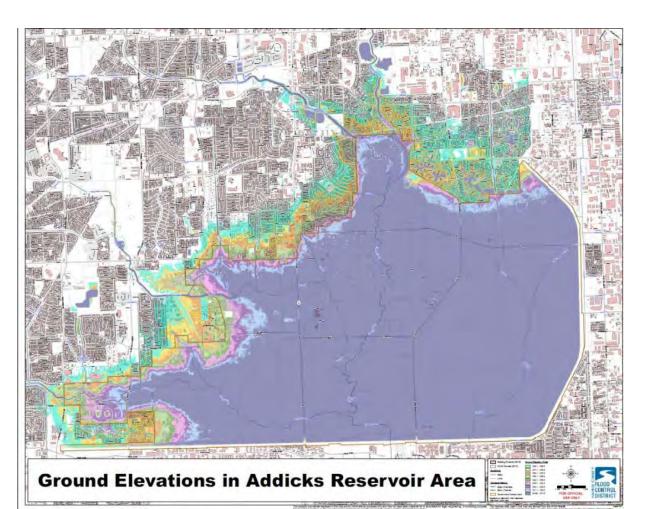
- High Wind Loading
- Redundant Power Services
- Withstand the Storm
- Maintain Operations Without Interruption
- **\$**\$\$-\$\$\$\$

- Potable water storage
- Elevate Critical Infrastructure
- Civil Defense Response Site
- Recover Operational Status
 - Quickly
- Preventative Maintenance

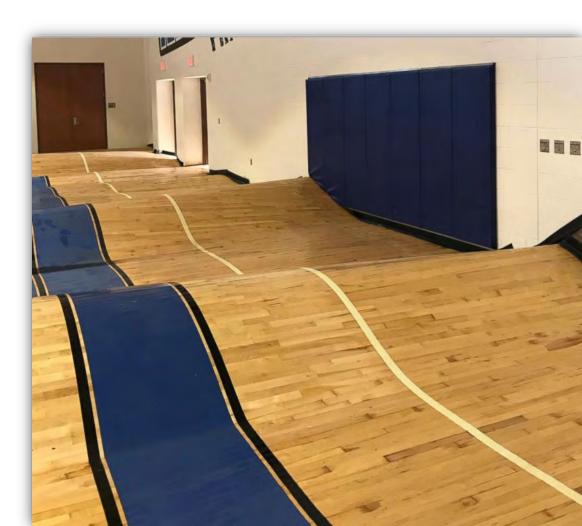
■\$-\$\$

Site Selection is Everything

- Review Aerials and FEMA Maps
- Review Wind Maps (DFW in 250 MPH Zone Per IBC)
- Assume the Worst Case Asset Protection
 - Life Expectancy
 - Operational Criticality
 - Risk of Flood/Wind Damage



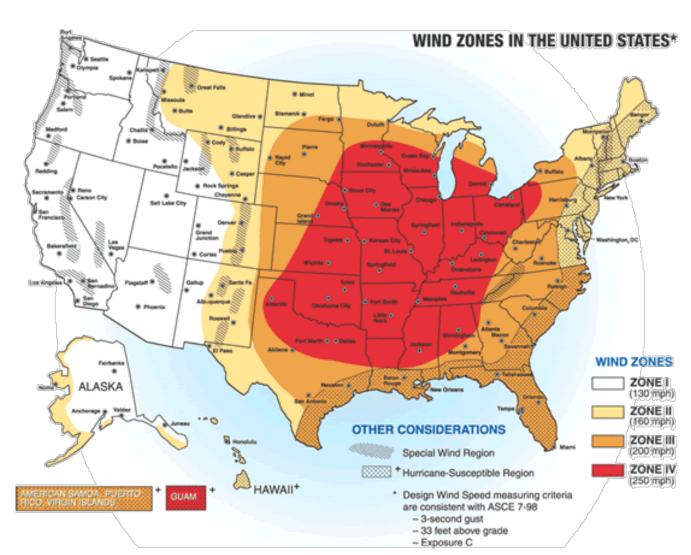
Extended Site Parameters

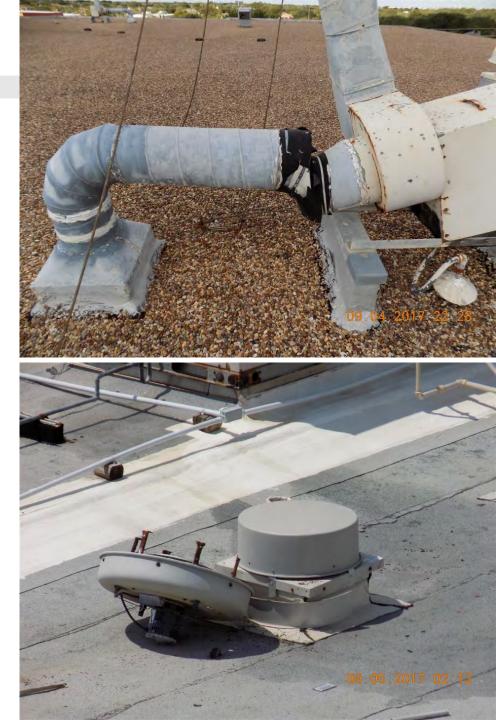

- Storm Event Performance
- Major Roadway Impacts
- Residential Risks
- Staff Transportation
- Utility Interruptions

Best Practices Water Protection

- 1' / 500 year flood elevation (2' in Harris County, Texas)
- Padmount Equipment 1' AFF
- Electrical/MDF/NOC on 2nd Floor
- Drains at Doors, drains in Vestibules
- Durable Flooring Selections

Best Practices Water Protection


- CMU walls on 1st Floor
- Cementitious wall board on 1st Floor
- Sanitary Check Valves
- Curbs for Ground Floor Glazing
- Flood Barriers, Site Berms, Levees


Best Practices Wind

- Shelter Design Wind Speeds For Tornadoes
- Resist 100 mph stud
- Resist 67 mph roof impact

Best Practices Wind

- HVAC Restraints Roof/Site
- Landscaping Away From Building
- Interior Shelter Room
- Wind Loading of Canopies/Roofs
- Impact Resistant Glass/Frames
- Indoor Generator Room
- Indoor Water Cooled Chillers

Best Practices Operations

- Detailed Weather Reports
- Operations Center (EOC)
- Coordinate Response with Regional EOC's
- Business Continuity Plans
- Colocation for Technology
 Infrastructure

After the Storm

- Assessment, Photographs and Video
- Contact Insurance Agent, FEMA, State
- Hygienist, Architects, Engineers
- Mitigate/Restore/Replace
 Infrastructure
- Disaster recovery consultant (Federal Funding Process Expert)

Some Hidden Risks

Mold

- Desks, Chairs, Books, Supplies
- Contaminated Duct Systems
- Exposure of Building Materials and Systems to High Humidity Levels
- Toxic Hydrocarbons and Fecal Matter in Flood Waters

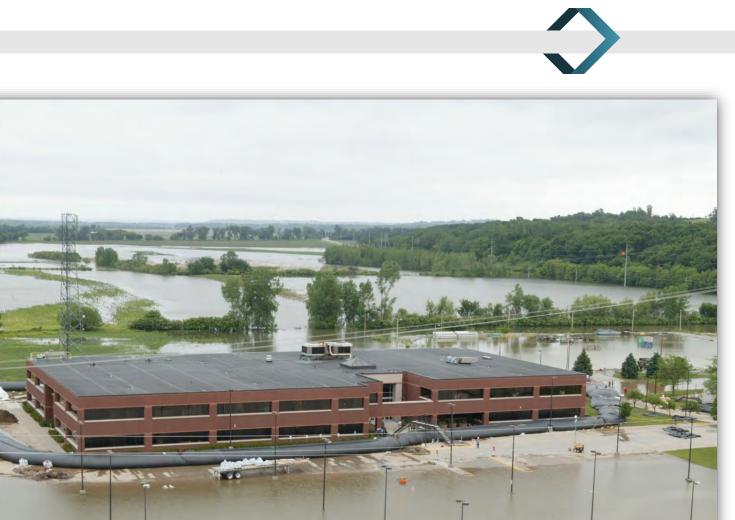
Elevated Substation

• Emergency generator

- Lighting
- auditorium house lights
- exist signs
- Communications
- Command center
- fire alarm equipment
- Coolers and freezers

Manual transfer switch

- Portable generator
- Lights and heating at gyms, locker rooms kitchen, cafeteria maintenance
- Kitchen equipment



Demountable Flood Barriers

Aqua dams

High Strength Glazing

Photovoltaic Design

Solar Panel Layout – Roof, Ground, Canopy

\mathbf{O}

Facility Size – 240,000 sq. ft.

- Projected Annual Electric Consumption: 2,104,000 kWh
- Projected Annual Electric Bill Summary: \$195,876
- Utility Rate Structure: LGS with Net Metering Agreement for Interconnection and Parallel Operation of Grid-Connected On-Site Solar Generation

1 MW Solar Array Performance

- Area: 198,924 sq. ft. (4.6 acres)
- Annual Production: 1,702,000 kWh
- Initial Capital Cost: \$2,000,000
- Annual Electric Savings: \$165,500
- Simple Payback: 11.6 Years
- 20 Year Life Cycle M&O Savings: \$3,310,000
- Total Energy to Grid: 34,040 MWh

Safe and Secure Schools - Layering

Physical Security

- 6' Iron Fencing Around Entire Perimeter
- Bollards, Speed Bumps, Vehicular Barriers
- Dedicated First Responders Access Drive
- Secure Entry Vestibule with Ballistic Hardening
- Window Sill Heights Elevated (5')
- Access Controlled Doors

Safe and Secure Schools - Layering

- Surveillance, Messaging, Intelligence
- PTZ Surveillance Cameras with Facial Recognition Software
- Gunshot Detection & Weapons Radar
- Incident Response Room
 - Master Keys/Proximity Cards
 - Floor Plans
 - Access to Cameras
 - Access to Public Address

$\mathbf{>}$

Community Resilience – Health & Wellbeing

- Reducing Environmental Impact
- Human Performance and Productivity
- Community Engagement & Connectivity

Reducing Environmental impact

Reduce air pollutant emissions Facility recycling program & waste management planning

Material selection/ Material effectiveness

Facility recycling program & waste management planning

• Trash Compactor

- Reduced disposal costs
- Landfill Reduction

Water efficiency

- Reduce potable water consumption
- Provide landscaping that does not require permanent irrigation systems
- Reduce runoff
- Improve water quality
- Provide on-site food production for a % of the building footprint
- Rainwater harvesting for facility use and crisis use

Human Performance and Productivity

- Indoor Air Quality Performance: Mechanically, Naturally, Mixed-mode
- Environmental Tobacco Smoke Control
- Low-Emitting Materials
- Reinforced natural daylighting
- Quality Views to Exterior for 25% of Occupied Space
- High-Quality Interior Lighting
- Provide effective acoustic design

Daylight and Views Fresh Air Human Productivity

Community Engagement & Connectivity

\diamond

Community Access

Improve quality of life

Has identified, assessed, and incorporated community needs, goals, and objectives into the project

Knowledge and society

Meeting space Shared library Civic space Shared Athletics

Incorporate Community Views & Local Character

Community production

Plant nursery Organic food Auto repair News and radio

Local Investments

Deep rooted community attachment to school, willing to come together after crisis

- Expand Citizen Participation:
 - Councils, Organizations, Communication
- Resilient Organizations:
 - Develop a resilient organization
 - Social equity: community, supply chain, project team
- Develop or Expand Local Skills
 - Project delivery
 - Hire locally
 - Skills outreach
 - Local development and competitiveness

Community Engagement & Connectivity

Surrounding density and diverse uses

Measures for the Social/Wellness Environment

Elements	Measures
Organizations	 Distribution of community groups across the region Number of active interfaith organizations Diversity and number of community organizations
Communications and social media	 Speed with which messages travel through official and unofficial channels Number of people who have or do not have access to social media
Connectedness	 Number and type of organizations in which people are engaged Number of people registered to vote Knowledge of what resources are available during and after a disaster Network analysis to map social connectedness
Trust	 Amount of connection and communication between local officials Public confidence in leadership Public trust in leadership
Volunteerism	 Number of people who participate on neighborhood teams (e.g., Community Emergency Response Teams) Number of volunteer hours per capita Number of active disaster response teams in a neighborhood/community Number of people who attend neighborhood meetings Number of people who attend community resilience training
Other	 Number of people with access to transportation Types of transportation available Connection of residents who do not use social media with other community providers

Presented by:

Todd Hanger | AIA, LEED AP BD+C, Megan Saunders | LEEP AP BD+C Mark Madorsky | P.E., CXA, LEED AP BD+C

April 7, 2018

