Mold and Moisture: Double Trouble for Schools

- Steven Caulfield, Turner Building Science
- Chad Griffith, Griffith Engineering
- Bill McKnight, Forsyth County Schools

Moisture & Mold Basics

Steven M. Caulfield, P.E., CIH
Turner Building Science & Design, LLC
www.turnerbuildingscience.com

Mold (fungi) Amplification is Limited by Moisture

- Liquid Moisture needed to Initiate growth, 55 - 85 deg. F preferred (ACGIH)

Presentation Outline

1. Climate & Building Moisture Dynamics
2. Current Guidance Regarding Bioaerosols Health: Finding, Fixing, & Preventing Mold
3. Moisture Resistant Assemblies

Control of Moisture/Mold
- Conduct routine moisture inspections
- Establish mold prevention and remediation plan
- Maintain indoor humidity levels between 30% and 60%
- Address moisture problems promptly
- Dry wet areas within 24-48 hours

Moisture ? Amount Of Precipitation

In a Wet or Dry Climate?
Condensation?

Temperature of The Surface & Dew Point of Outdoor Air Condensation on Surfaces at Dew Point

Buildings Get Wet From:
- Site Issues, Wicking Of Water
- Climate Moisture, or Re-evaporation (oversized or poor part-load AC drying design)
- Wind Driven Rain & Plumbing Leaks
- Occasionally: Occupant Activities

How Fast Things Dry Out Depends Upon:
- The Type of Material
- The Relative Humidity of The Local Air
- Air Movement (Evaporation)
- Occupant Actions To Expose Surfaces

Evolution of Building Shell Construction (old):
- Single Pane Glass
- Steam Heat
- Low "R" Value
- Often Low Air Leakage
- "Huge Hygric Buffer Capacity"

Evolution of Building Shell Construction (newer):
- Single? or Double Pane Glass
- Glass, metal studs and sheetrock
- 150 gallons per 100,000 square feet
- Hydronic or All Air
- Often High Air Leakage & Low R Value
- "Lower Hygric Buffer Capacity"

“Water Managed Assemblies”
- Keep Wind Driven Rain Out
- Manage Vapor Drive For The Climate
- Allow Moisture To Leave
- Use Durable Materials
Water Runs Downhill – Except When It Does Not

• Gravity
 - Vapor pressure differences
• Air / Water pressure differences
 - Surface tension

When Renovating, Don’t Put Textiles, Paper, or Wood on a Potentially Damp Surface

Fix:
1. Eliminate Moisture Source
2. Warm the Surface
3. or Dry The Air

Solution #1
Eliminate Moisture: Cover All Sumps & Earth Surfaces

#1 Site Moisture
(½ foot drop per 10 feet run = 5% pitch)

Drain: Always Pitch Away From Building

#2 Condensation Moisture

Fix:
1. Eliminate Moisture Source
2. Warm the Surface
3. or Dry The Air

Obvious Moisture Inside

Courtesy Camroden Associates

Indoor Air Quality (IAQ)

Indoor Air Quality (IAQ)

Indoor Air Quality (IAQ)

Indoor Air Quality (IAQ)
Solution #2
Warm surfaces (insulation)

- Warm walls and floors
 - A) exterior insulation, VB & insulation under the floors, and WP & insulation outside the walls
 - or B) interior insulation, vapor barrier, damp-proofing / waterproofing & good site drainage

Solution #3
Dry Air

Air humidity control
1) monitor with hygrometers (keep < 60% ? RH)
2) ?? air basement only on days with low outside RH (maybe at best one day a week???)
3) use a serious dehumidifier set up to run without needing attendance, with a drain or pump.

Serious De-humidifier
140 pints a day for same energy consumption as 40 pints a day, (may be ducted) Energy Star Rated?
www.thermastor.com

“Air Conditioning”
Can Wet or Dry A Building

#3 Flooding / Leaks

Fix: Find Water & Dry Fast
Permanently Fix Leak

Responding to Clean Water Flooding

Find Excess Dampness Fast
- Ventilate and Dry all Cavities & Monitor Drying dry in 24 - 48 hrs?
Find & Fix Moisture from Building Piping & Plumbing
- Plumbing Leaks
- Valve Drips
- Waste Lines
- Fire Protection Leaks

Find & Fix Window Leaks
Leaks may not always be visible

Fix HVAC Air Leakage into Attics: Keep Building Air from Entering the Attic
Seal Ducts & Ceilings
Or Move Thermal Envelope To Roof!!!

Finding & Fixing Mold Guidance

Repeated exposure to lots of Mold not healthy
- ACGIH Guidelines
 - Allergic / Asthma
 - Irritants / Toxins
 - Opportunistic Pathogens

Some Mold Guidelines
- ACGIH Bioaerosols: Assessment and Control acgih.org/store/Products
- NY City Guidelines ci.nyc.ny.us/health
- US EPA Guidelines epa.gov/iaq/pubs/moldresource.html
- AIHA Recognition, Evaluation, and Control of Indoor Mold (microbial growth) www.aiha.org
Mold cleanup by qualified personnel / follow Guidelines

- Contain the area and source, and minimize dispersion
- Protect the mitigator
- Protect the occupants
- Eliminate the moisture source!

Visual or Olfactory Signs of Suspect Mold/Microbial Activity?

- Looks Like Mold?
- Smells Like Mold?

- Assume it is, and behave accordingly, unless lab results from tape lift samples, or bulk samples prove otherwise.

Upper Building Envelope?

Roofing System Leaks?
Roof Drain Leaks?
Cold Pipes?
Above Ceilings
Plenums?

Just Stains or Mold Growth?

Bulk sample?
Bio-film sample?
Air Testing?

Lower Building Envelope?

- Utility Trenches - Behind Cove Base

Lower Building Envelope?

- Elevator Shafts
Summary

• Minimize opportunity for growth

• When Mold does grow, **remove it without dispersing it into the breathing air.**

• Minimize the likelihood of the mold growth returning (**find the moisture & repair**).

Beware Possible? Snake Oil

• Enzyme Coatings
• Antimicrobial Coatings (poisons)
• Air Purifiers
• Radiation (UV)
• Ozone in Air

• Others?

Recent Moisture / Mold Resistant Products

• Paperless Gypsum Sheathing
• Paperless Gypsum Wall Board
• Wax/VOC Impregnated OSB
• Nylon Vapor Barrier

• Others?

Tried & True Moisture Resistant Products

• Plaster
• Gloss Paint
• Masonry
• Copper
• Plastics?

• Others?
Water Managed Assemblies

- Roofs, Attics, & Walls
- Basements, Crawlspace, Slabs

1. Keep Wind Driven Rain Out
2. Manage Water Vapor
3. Allow Assembly to Dry if it Gets Wet
4. Use Durable Materials

Example: Building Problems Identified

Observations:
- Exposed dirt in crawlspace
- In door humidity at 70% RH or above
- Extreme air infiltration at soffit & crawlspace
- Site perimeter drainage issues
- HVAC control issues
- HVAC balancing issues

Solutions Identified

- Fix Crawlspace
- Fix Soffits
- Re-commission HVAC controls
- Balance HVAC
- Address Some Drainage

Questions & Comments.....

Steven M. Caulfield, P.E., CIH
Turner Building Science & Design, LLC
1-800-439-3446
http://www.turnerbuildingscience.com

Example: Building Problems Identified

Observations:
- Exposed dirt in crawlspace
- In door humidity at 70% RH or above
- Extreme air infiltration at soffit & crawlspace
- Site perimeter drainage issues
- HVAC control issues
- HVAC balancing issues

Problem Identified

Solutions Identified

- Fix Crawlspace
- Fix Soffits
- Re-commission HVAC controls
- Balance HVAC
- Address Some Drainage

Fixed Crawlspace
Fix Soffits

Before and After Air Leakage Testing

Diagnostic Tools: Water & Moisture

- **Source of Water (above, below, in walls, dew point?)**
- 1. Visual Assessment (NIOSH Form)
- 2. Various Moisture Meters
- 3. Concrete Floor Testing
- 4. Wall/Window Infrared Thermography
- 5. ASTM Type Window Leakage Testing
- 6. Past Reports
- 7. Construction Documents
- 8. Occupant Reported Information

NIOSH Visual Assessment:

Email: moldsheet#1@cdc.gov
or mrmartin@cdc.gov

The Purpose of the NIOSH Dampness and Mold Assessment Tool:

- **Identify and record** areas of dampness or mold throughout your building.
- **Trigger early repair and remediation** to avoid potential health effects and more costly repair and remediation.
- **Create awareness** of potential problem areas.
- **Track (monitor)** past and present problem areas by repeating the use of this tool at the frequency which your individual facility determines.
District Overview:
- Students - 38,000
- School Buildings: 38
- Square Footage: ~ 5,000,000
- Employees: 4,700
- Teachers: 3,300
- School Energy Costs: $1.03 / square foot

Bill's Keys to Prevent Mold and Moisture:
- Keep water from coming into buildings
- Control humidity below 60%

2007 SPLOST Project Goals
- Provide Independent Outside Air Systems
- Improve Building Envelopes
- Upgrade outside air levels to 15 cfm/student
- Energy Efficient Approach

2007 SPLOST Project CASE STUDY
- 17 Schools
- Griffith Engineering, Inc. to provide design services
- Multiple mechanical contractors involved in implementation
- Air quality tests since project always better inside than outside

IAQ Challenges
- Code changes - outside air requirements
 - Many existing schools designed for 7.5 cfm/student or less
 - Current IMC Table 403.3 requires 15 cfm/student
 - Increased outside air volume introduces moisture challenge
 - Increased dehumidification introduces energy efficiency challenge

Forsyth Case Study
- Address Envelope – Compromised Vapor Barrier
Forsyth Case Study

- Energy Recovery Units with Desiccant Wheel
- Toilet Exhaust Air Ducted to ERU
- OA and EA ducted to classrooms
- After hours recirculation

Benefits

- Ability to control the humidity
- Eliminated the mold and moisture issues
- Improved the classroom comfort and IAQ
- Ability to retrofit to multiple types of HVAC systems ie: wall mounted package, rooftop package etc.
- Meet the 15 cfm fresh air standard
- Allows for tight operation of the system to gain energy savings

Breakout Session Q&A

- Review your actions and strategies that you would like to apply to your own work.
- Please be ready to discuss these actions in your own words.