

THE FOUNDATION OF ARCHITECTURE

Why does our structure cost so much?

CB0

INTRODUCTIONS

Owner

Easy Foster, RTSBA, AIC, CPC, LEED AP BD+C Executive Director of Planning and Construction Conroe Independent School District B.S. in Construction Science, Texas A&M University

Masters of Science in Management, West Governors University

Architect

Cody Boyd, AIA Principal // Client Executive PBK Architects B.S. of Architecture, The University of Texas at San Antonio

Masters of Architecture, University of Houston

Engineer

John Kubala, P.E. President & CEO Kubala Engineers Texas B.S. Architectural Engineering The University of Texas at Austin

CB0 All introduce our selves

Boyd, Cody, 2024-05-08T13:11:40.031

AGENDA

- Identification
- Historic Data and Trends
- Steel Example:
 - Window Example Scenarios / Case Study
- Concrete Example:
 - Geology & Site, Foundation Example Scenarios
- Rules of Thumb

ABSTRACT

Designing schools that support modern learning and proactively anticipate future needs presents a fundamental change in educational architecture. Creating dynamic, flexible, and sustainable spaces that foster creativity, collaboration, and learning, coupled with new code requirements, unique geological challenges, strict site requirements, and architectural complexity, demands a reevaluation of structural engineering practices to ensure that these innovative spaces are not only visually striking but also safe, resilient, functional, and fiscally responsible.

In response to this challenge, owners, architects, and structural engineers are developing advanced strategies that integrate cutting-edge technologies, materials, and methodologies into their designs. These strategies encompass a wide range of considerations, including but not limited to:

Impacts on our structural design due to site conditions:

Taking the appropriate time to study and understand each project site is imperative to the overall design of a building. We must utilize our resources to their utmost potential to prevent over-engineering and excessive strategies or techniques. One of our best tools is the collaboration and inclusion of our Structural, Civil, and Geotechnical Engineers. Understanding the geology, characteristics, soil conditions, and additional factors impacts our structural designs and, inevitably, our project budgets.

Architectural configuration and relation to building size compared to project budget:

The facilities we are designing today and for the future continue to grow in scale. With the increased square footage and the desire for more expansive, open, and flexible spaces, structural engineers face added challenges when designing structural systems and foundations that meet architectural needs and the client's budget.

WHAT PROBLEM ARE WE HIGHLIGHTING?

- Project Cost
- Limited Funding
 - Tangible elements to address
 - Project Design (structure)
 - Ego

HISTORICAL DATA

HISTORICAL DATA

Prototype design w/ 9 iterations over the past 12 years

Elementary / Intermediate New Construction Actual Bid Data

INFLATION, POJECTION, AND PLANNING

If we Overestimate Inflation – we don't spend and/or potentially extend the overall bond cycle (Ex: 2008 Bond extended to 2015)

If we underestimate...

We carry/create Contingency Budget

If we run out of Contingency Budget

we must either Cut Scope

Supplement with General Funds from the M&O Budget

Current Forecast 12%

PLANNING

Bids Received 12% Increase

January 2023 - \$100

January 2024 - \$112

- January 2025 \$125.44
- January 2026 \$140.49
- January 2027 \$157.35
- January 2028 \$176.23

2019 Bond Fun	ding & Procuren					1						2							3							4									5					
		May-2019 Jun-2019	Jul-2019 ^2019	Sep-2019 Oct-2019	Dec-2019	Jan-2020	⁻ eb-2020 Mar-2020	Apr-2020 May-2020	Jul-2020	Sep-2020	Jot-2020 Nov-2020	Jan-2021		- eb-2021 Mar-2021	May-2021	Jul-2021	Sep-2021 Oct-2021	Vov-2021 Dec-2021	Jan-2022	-con-2022	Mar-2022 Apr-2022	May-2022 Jun-2022	Jul-2022 Aug-2022	Sep-2022 Oct-2022	Vov-2022 Dec-2022	Jan-2023		- eb-2023 Mar-2023	Apr-2023 May-2023	Jun-2023 Jul-2023	Aug-2023	Oct-2023	Vov-2023 Dec-2023		Jan-2024		-eb-2024	Apr-2024	Jun-2024	Jul-2024 Aug-2024
Project	Advertised Bond Costs		Í						Í													- /	Í						-										Í	Í
Elementary #45 - (Flex 20)	\$ 35,079,000.00				1	33,079,000.0						\$ 2.0	000,008.01							- 2							=	- 25			002						#	-	+	
Elementary #46 - (Flex 21)	\$ 37,184,000,00			Ħ		2,404,754,7					-	1 33,0	179,245 2						\$ 2,000,0	00:00								- 22	+		000	Ħ					#		+	
																										-	_										#		#	
Elementary #47 - (Flex 22)	\$ 39,415,000.00				=						222		293102777						\$ 35,183,9	62.26						1 2,000,00	10,00										-		++	
Elementary #48 - (Flex 23)	\$ 39,415,000.00																		\$ 7,221,0	27.74						1 25,483,49	62.26							1	2	000,000,0			Ħ	

NEW DESIGN CHALLENGES:

Fenestration & Design Trends

Revisions in Design Codes & Laws

Material Cost and Availability

Population Growth

Site Constraints

ALTER<u>EGO</u>

Owner

The Boss

Architect

The Hero

Engineer

The Problem Solver

Potential Savings from Value Engineering

INFORMATION OVERLOAD: THE SCIENCE BEHIND BAD DECISIONS

THE CHECKLIST MANIFESTO

EXAMPLE SCENARIOS

LOOSE LINTEL:

- 250 lbs of steel
 - Steel = \$650
 - Galv. = \$100
 - Erection = \$0.00
 - Total Cost = \$750

CHANGE IN MATERIAL

• Loose lintel condition no longer valid

BOLTED SHELF ANGLE:

- 250 lbs of steel
 - Steel = \$650
 - Galv. = \$100
 - Erection = \$300
 - Total Cost = \$1,050
- Requires CMU back-up with lintel beam
- Limited to 15'+/-
- Requires good CMU jambs
- Give attention to masonry joint locations

HORIZONTAL TUBES

- 3,750 lbs of steel
 - HSS16x8x3/8" + HSS12x8x3/8"
 - Column size increase
 - Steel = \$10,000
 - Galv. = \$100
 - Erection = \$5,000
 - Total Cost = \$15,100
- Unlimited horizontally
- Vertical alignment recommended

FRAMED OPENINGS

- 2,000 lbs of steel
- HSS8x6x3/8" + HSS6x6x3/8"
- Steel = \$5,400
- Galv. = \$100
- Erection = \$3,500
- Total Cost = \$9,000

HANG-DOWN ONLY

- 1,000 lbs of steel
 - Tube steel horizontal
 - Channel hang-downs
 - Roof beam size increase
 - Less increase at composite floors
 - Steel = \$3,400
 - Galv. = \$100
 - Erection = \$5,000
 - Total Cost = \$8,500
- Requires CMU for sill support
- Requires drywall infill over opening

HANG-DOWN & POST-UPS

- 1,500 lbs of steel
 - Tube steel horizontal
 - Channel hang-downs
 - Roof beam size increase
 - Less increase at composite floors
 - Steel = \$4,650
 - Galv. = \$100
 - Erection = \$5,600
 - Total Cost = \$10,350
- Assuming full height drywall

CASE STUDY

- 1,200 to 1,600 Student Junior High Schools surveyed
- Overall Glazing to Solid Façade 28%
- Academic Wing Glazing to Solid Façade 32%
- 750sf Classroom 24'x32' Glazing Ratio 10%

CASE STUDY

- 3,800 Student High School
- Overall Glazing to Solid Façade 30%
- 800sf Classroom 26'x31' Glazing Ratio 10%
- Utilized winddowns no wider than 7'
- Utilized masonry between glazing units

CASE STUDY - RESULT

- 40 Learning Spaces with 3 levels
- 120 individual rooms requiring 10% daylighting
- Cost for two units vs one large window unit
 - Original Wider Openings: \$16,000 per grid spacing
 - Savings per unit: \$15,250 (2 windows per Unit)
 - Total savings for academic wing: \$915,000

GEOLOGY & SITE

J.S. DEPARTMENT OF AGRICULTURE

Soil conservation service

COMMON FOUNDATION SYSTEMS:

- Spread Footings
- Belled Piers
- Driven Piles
- Straight Shaft Piers
- Auger Cast Piles

SPREAD FOOTINGS / STRIP FOOTINGS

- Generally low capacity:

 Low = 1,500 to 4,000 psf
 High = 2,000 to 6,000 psf
- Labor Intensive to construct:

 Benching of the excavation
 Pilaster construction/Forming required
 Consider round footings

BELLED PIERS

- Generally medium capacity:

 Low = 3,000 to 5,000 psf
 High = 4,000 to 7,500 psf
- Easy to construct
- Water infiltration concerns

STRAIGHT SHAFT PIERS

• High capacity: • Skin Friction • 2,500 psf

○ End Bearing:
 ○ 20,000 psf
 ○ 40,000 psf

- Expensive
- Slurry Drilling
- Pier Casing

AUGER CAST PILES / PIERS

• High capacity: • Skin Friction • 2,500 psf

○ End Bearing:
 ○ 20,000 psf
 ○ 40,000 psf

- Expensive
- Slurry Drilling
- Pier Casing

DRIVEN PILES

FOUNDATION SYSTEMS (CONT'D) :

- Mat Foundation
- Waffle Slab
- Ribbed Mat
- Micropiles
- Proprietary Solutions:
 - Geo Piers
 - Helical Piers
 - Stacked Cylinders

BUILDING EXAMPLE:

- Belled Piers (End-Bearing ONLY)
 - Dead Load Capacity = 2,000 to 4,000 psf [<u>3,000 psf</u>]
 - Total Load Capacity = 3,000 to 6,000 psf [<u>4,500</u> psf]
 - Maximum Belled Pier Size = 12'-0" to 14'-0" diameter

BAY SPACING

35' x 35'

- Belled Pier Spacing: 3 Bell Diameters
- 35' bay spacing = 12' Belled Pier
- 12' Diam Pier Area = 113 SF
- Total Load Capacity = 113 SF x 4,500 psf

<u>= 508 Kips</u>

BUILDING EXAMPLE:

Story Height:	Bay Spacing	<u>:</u>	Roof LL + DL:		Floor LL + DL:	<u>N</u>	lumber of Floors:
Single-Story	35' x 35'	X	(20 psf + 35 psf)	+	(N/A)	X	Zero
Two-Story	35' x 35'	X	(20 psf + 35 psf)	+	(80 psf + 100 psf)	X	1
Three-Story	35' x 35'	X	(20 psf + 35 psf)	+	(80 psf + 100 psf)	X	2

TOTAL LOAD (12' DIAMETER BELLED PIER CAPACITY) = 508 KIPS

<u>Story</u> <u>Height:</u>	Loading:		<u>Total Load</u> (Kips):	
Single- Story	(35'x35') X (20psf + 35 psf)	=	80 Kips	<u>OK</u>
Two-Story	(35'x35') X (20psf + 35 psf + 80 psf + 100 psf)	=	300 Kips	<u>OK</u>
Three- Story	(35'x35') X (20psf + 35 psf + (2) 80 psf + (2) 100 psf)	=	520 Kips	<u>N.G.</u>

BUILDING EXAMPLE:

- Straight Shaft Pier 36" Diameter
- Depth to rock Varies
- Embedment Varies
- Total Load Capacity @ 10' Embed = <u>450 Kips</u>
- Total Load Capacity @ 20' Embed = <u>700 Kips</u>
- Total Load Capacity @ 25' Embed = <u>810 Kips</u>

TOTAL LOAD (36" DIAMETER SS PIER) = 450 - 810 KIPS

<u>Story</u> Height:	Loading:		<u>Total Load</u> (Kips):	
Single- Story	(35'x35') X (20psf + 35 psf)	=	80 Kips	<u>OK</u>
Two- Story	(35'x35') X (20psf + 35 psf + 80 psf + 100 psf)	=	300 Kips	OK
Three- Story	(35'x35') X (20psf + 35 psf + (2) 80 psf + (2) 100 psf)	=	520 Kips	<u>OK</u>
Four- Story	(35'x35') X (20psf + 35 psf + (3) 80 psf + (3) 100 psf)	=	740 Kips	OK

PROPRIETARY SOLUTIONS:

Existing Site Condition

Existing Site Condition w/ Building

Example Elevation View of planned school on cross section of site

Blue dot hatch indicates native undisturbed soils

Existing Site Condition with Building and Foundation As-Designed

Deep Piers to roughly 85' below grade (max) Grade Beams span pier to pier Slab is Structurally suspended 2-way Flat Plate

Example Elevation View of planned school on cross section of site

Existing Site Condition

Existing Site Condition w/ Building

Example Elevation View of planned school on cross section of site

Blue dot hatch indicates native undisturbed soils

1.) Remove existing soils down to a predetermined depth = -8'-0" plus any additional grade change

indicates native undisturbed soils

1.) Remove existing soils down to a predetermined depth = -8'-0" plus any additional grade change

2.) Either provide a grid of rammed earth piers, or locate them strategically at pier/column locations. The depth of these piers would need to be determined by the rammed earth pier engineers (we are looking for 2,000 psf of bearing capacity for a Spread Footing Foundation Design)

1.) Remove existing soils down to a predetermined depth = -8'-0" plus any additional grade change

2.) Either provide a grid of rammed earth piers, or locate them strategically at pier/column locations. The depth of these piers would need to be determined by the rammed earth pier engineers (we are looking for 2,000 psf of bearing capacity for a Spread Footing Foundation Design)
 3.) Provide a minimum select fill pad of 8'-0" + whatever grade change is planned

1.) Remove existing soils down to a predetermined depth = -8'-0" plus any additional grade change

2.) Either provide a grid of rammed earth piers, or locate them strategically at pier/column locations. The depth of these piers would need to be determined by the rammed earth pier engineers (we are looking for 2,000 psf of bearing capacity for a Spread Footing Foundation Design)
3.) Provide a minimum select fill pad of 8'-0" + whatever grade change is planned

4.) Install the Spread Footing Foundation (Design In-Progress)

Building on modified sub-grade with Alternate Spread Footing Foundation Design

RULES OF THUMB

- Fast-Track / Early Issuances
- Geotech Report, Always & Always Early
- Window Width & Width between glazing units (8'-0" max, 2' jambs)
- Economical Grid Spacing: 35' x 35' (Column Section: Wide Flange)
- Maintain material uniformity & Orientation
- Stacking of floors/levels
- Glazing VE Considerations

RULES OF THUMB

- CMU to Stud transitions
- Depending on Geology and Location: Sprawling vs Stacked
- Parapet Heights (Stud and CMU)
- CMU wall heights
- Studs wall heights
- PVR Considerations
- Windstorm Assemblies

THANK YOU

Easy Foster: efoster@conroeisd.net Cody Boyd: cody.boyd@pbk.com John Kubala: john.kubala@kubalaengineers.com