Floor Coverings in Schools: Particle Buildup and Resuspension Characteristics based on Field and Chamber Studies

R Shaughnessy, PhD¹

¹Indoor Air Program, University of Tulsa, USA <u>RJSTULSAU@aol.com</u>; ph 918-320-3908

Background

- IEQ in schools is poor:
- Ventilation inadequate
- Temperatures elevated
- Poor IEQ in schools may affect students' performance (possibly teachers' too)
- School funding is minimal

Education for Schools (In the USA have TFS kits))

School Administrators need definitive outcomes to divert funds to undertaking significant improvements to IAQ

Tools For Schools

Indoor Air Quality - Discussion	
	•Thermal Environment •Ventilation •Flooring Aspects - Thermal Comfort - Moisture Management - VOCs - Dust Factor

November 4, 2008 Breathing Dirty Air May Lower Kids' IQ

Parallel Studies

- Reducing moderately elevated classroom temperatures & increasing outdoor air supply rate improved the performance of schoolwork
- Speed at which the tasks were performed was improved; effect on errors more confounded

Wargocki and Lyons (2008)

Carpets and IAQ: Are they compatible?

Floor Coverings in Schools.... Creating Controversy

- Dybendal and Elsayed, 1994
- **Hedge**, 2001
- **Ott**, 1998
- **Roberts**, 1998
- Hodgson, 1999
- Chandra, 2000

Schools... A Growing Challenge to Clean

- Limited maintenance/janitorial staff
- Outdated cleaning equipment
- Inadequate cleaning products
- No direct information on cleanliness
- What is "clean"; how to measure?
- Poor staff training

Carpet

- Can act as reservoir for more dust, proteins, and allergens per unit area, than hard floors
- Flooring surfaces can contribute to airborne levels
- Airborne levels reflective of surface contamination

Cole, et.al., 1996

Textile floor covering: not a homogeneous medium

- Backing
- Carpet weave type
- Face weight
- Density (including stitches/inch)
- **Adhesive requirements**

Questions:

- How much dust is there in a square meter of carpeted floor near the doorway of a elementary school classroom?
- How much time does is take to remove this dirt using a typical vacuum cleaner?

Preliminary School Recovery

Discussion

 Baseline was established by recovery efforts (78 sets) in 11 schools from 5 districts in Northeastern Oklahoma (High Schools, Middle Schools & Elementary Schools were sampled)

Schools study carpeted floor covering

- Light traffic area:
 - 9.6 g/m2 ; 30 sample population, range: 0.8-27.8 g/m2
- Medium traffic area:
 - 52.5 g/m2 ; 24 sample population, range: 21.7-99.0 g/m2
- Heavy traffic area:
 - 192.5 g/m2; 24 sample population range: 69.5 -504 g/m2

Shaughnessy, Brennan, Cole & Turner; 2005

Question:

- How much dust is there in a square meter of carpeted floor near the doorway of a elementary school classroom?
- How much time does is take to remove this dirt using a typical vacuum cleaner?

- Flooring Types (new product used each test)
 - Flow Through Carpeting
 - VCTT- Low to Medium face weights (14 to 20 ounces pile weight per square yard (400-550 g/m²) with a closed cell cushion backing
 - 190 grams per square meter loading

Factors influencing removal of dirt may include:

- Flow thru recovery inconsistent as compared to non-flow thru in the field data.... Why? :
 - The open weave backing of the flow through carpet allows passage of debris beyond the product backing
 - Deep cleaning solutions and extraction process residue buildup on the fibers
 - Inadequate maintenance may result in embedment of dirt into the carpet

RESUSPENSION TESTS

Model of particle resuspension rate

Qian, 2008, utilized a material balance equation to introduce a set of equations to calculate the rate of particle resuspension for static sealed chamber

 A_r, A, A_ν - Resuspension area, m²

V - Test space volume, m3

k - Deposition loss rate, 1/min

RR - Resuspension rate (RR), 1/min

n - Vacuum rate, 1/min

C_i - Concentration inside chamber,

particles/m³

L - Floor loading in size range of interest, particles/m²

Research (2005 – 2011): RESUSPENSION TESTS

In experimental chamber test runs:

- $\underbrace{18,\,100,\,150g/m^2}_{test \, runs}$ of floor dust loading were applied for FT and VCTT
- 18g/m² floor dust loading was utilized for VCT hard flooring test runs

In-school test runs

- The data gathered from on-site classrooms were grouped together for comparison purposes based on the total amount of dirt collected, subsequent to test run completion. The groupings consisted of:
 - + Dirt collected range from 50 to 100 grams per square meter
 - + Dirt collected range from 100 to 200 grams per square meter

The majority of this research studied the resuspension of particles of two size ranges at $0.8-1.5\mu m$ and $1.5-3.0\mu m$

RESUSPENSION RATES

In School Hard/Textile surface loading

Summary - Textile to Hard Surface Ratios
 Medium Traffic Areas: 12.8 (95% C.I.=6.9)
 High Traffic Areas: 28.5 (95% C.I.= 7.9)

WHERE IS THE DIRT ON HARD FLOORING?

- More dirt is deposited on carpet as compared to hard surfaced rooms (typical order of magnitude greater on carpet on daily basis)
- Carpet acts as sink for dirt to a point
- Hard floors do not retain dirt on surface – Lost to resuspension
 - Deposits on shelving, bookcases, surfaces, clutter
 Ventilation removal

Settled dust: Solid particles deposited onto a surface during a specific period of time.

Settled Dust-Implications

Research

Settled Dust (S.D.)

- S.D. accumulation related to sick building syndrome (shelf factor) Story Vation, Danish Town Hall Study, 1987
- Symptom reports correlated to S.D. content (bacteria, fungi, allergen) Gyntelberg, 1990
- Health impact proportional to <u>amount of dust</u>

- Testing in 140 school classrooms Spring 2009
- Testing in 70 classrooms asst'd w/ ATP measurements, Spring 2010
- Standardized placement of collection containers in rooms; 2 month minimum collection
- Gravimetric determination/dust detector of accumulated dust

Summary

- 1) <u>Particle resuspension and airborne concentration</u> are a function of time of activity, type of floorings, and floor dust loadings
- 2) Flow through (FT) flooring exhibits significantly higher resuspension rates (RR) than VCTT floorings
- <u>VCT hard flooring</u> displays significantly higher particle RRs as compared to VCTT and FT floorings in controlled chamber conditions and <u>similar loading</u>
- 4) <u>Typical floor dust loading</u> on a given school day is significantly higher for textile surfaces as compared to VCT
- 5) <u>Settled dust accumulation</u> indicates no significant differences between VCT and VCTT over an extended period of exposure
- 6) <u>Further research</u> is needed to determine end points for resuspended dust from different flooring types