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Seismology 101





Introduction to Seismology
Seismic waves are mechanical, elastic waves that can be divided into two categories:

Body Waves
◦ Longitudinal/compressional (P) waves
◦ Transverse/shear (S) waves

Surface Waves
◦ Rayleigh waves (compressional + shear)
◦ Love waves (shear only)
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Site Characterization 
and Classification



ASCE 7-16
The adopted standard for the 2018 and 2021 Building Codes



Drilling and the Standard Penetration Test



100’

Soil Borings
A soil boring involves drilling a hole to collect samples of soil and 
bedrock

A typical soil boring is drilled with a drill rig outfitted with a 6- or 
8-inch hollow stem auger

The depth is commonly determined to evaluate the soil profile 
for engineering purposes, not site class

ASCE 7-16 states that the site soil shall be classified based on the 
upper 100 ft (30 m) of the site profile; in most cases, borings are 
much shallower



Standard Penetration Test
The Standard Penetration Test (SPT) has been the standard practice to characterize 
and classify most sites

The SPT involves drilling a hole with a 6- or 8-inch auger and sampling with a driven 
split spoon sampler

The sample barrel is driven 18-inches with a 140lb hammer falling 30-inches and the 
number of blows for the final 12 inches are recorded (field N-Value)
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Gravel or heaving sands can 
overstate blow counts
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Based on the limited field N-Values, and knowledge of regional geology, an estimation 
of the average N Value down to 100 feet is made, and a site class is selected



ASCE-7 standards are being modified to limit the assumptions 
associated with modeling the upper 100 feet of soils



ASCE 7-22
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Shear Wave Velocity Testing

Shear wave velocity is controlled by the shear modulus (essentially 
the hardness) and density of soil or rock

It is a good measure of how much ground shaking will occur in a 
particular soil or rock type, during an earthquake



Shear Wave Velocity Testing

Multichannel Analysis of Surface Waves (MASW)

Microtremor Array Measurements (MAM)



Geometrics Geode Geophone system



Multichannel Analysis of Surface Waves (MASW)

MASW is an active method where seismic energy is introduced to the Earth and 
measured with geophones in a linear array some distance away from the source.



These seismic waves travel in all directions and with different frequencies
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MASW Summary
MASW is fast, cost effective & noninvasive technique using an 
active source to evaluate VS100

MASW is great for profiling shallow soils

The depth of investigation is limited by availability of low 
frequency data, typically to 50-100’



Microtremor Array Measurement (MAM)

Passive Method where ambient seismic energy (wind, waves, cars, electricity, etc) is recorded over a 
longer time period 







MAM Summary
Like MASW, MAM is a fast, cost effective & noninvasive technique to evaluate VS100

Excellent for profiling to depths of much greater than 100 feet

Sensitive to noise – needs some but not too much 

Lack of high frequency data can leave gap in shallow Vs data

Can be combined with MASW to give comprehensive VS100 profile



ASCE 7-22
The new standards do allow for correlations
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Seismic Design of Structures
Buildings have a natural period (T) which is the time it 
takes to vibrate back and forth

The natural period is generally a function of height and 
building stiffness

For many buildings, the period (in seconds) is about a 
tenth of the number of stories



The soil profile has a resonant frequency dependent on its shear wave velocity and 
thickness

If the period of ground motion matches the natural resonance of a building, it will 
undergo the greatest oscillations and suffer the greatest damage

Hard bedrock has higher frequencies and therefore vibrates shorter buildings with 
short periods and high resonant frequencies while soft soils cause the greatest 
damage to tall buildings with low resonant frequencies

SHORT STIFF 
BUILDING

TALL FLEXIBLE 
BUILDING



Spectral Acceleration
• During an earthquake, the building oscillations, or vibrations 

create forces on the structure due to the acceleration and 
mass of the building (F=MA)

• The top of a building that is oscillating or swaying in an 
earthquake can develop a greater acceleration than at the 
base.  This is described as spectral acceleration

• Spectral acceleration is the maximum force experienced by a 
mass on top of a rod having a particular vibration. 

• Accelerations from a large earthquake are comparable to 
what you might feel maneuvering tight turns in a sports car



ASCE 7-16 Two-period Design Response Spectrum

ASCE 7-16 Two-period Risk-Targeted Maximum Considered Earthquake Response (MCER ) Response Spectrum



ASCE 7-22 Multi-period Design Response Spectrum

ASCE 7-22 Multi-period Risk-Targeted Maximum Considered Earthquake Response (MCER ) Response Spectrum



ASCE 7 Hazard Tool

Input (Part of) Output

ASCE 7-22 Multi-Period Response Spectrum

https://asce7hazardtool.online/
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Conclusions

Western Washington is at risk of large earthquakes

These earthquakes send seismic waves that amplify in the near surface soft soils

New building codes and seismic design standards require an in depth look at the upper 100 feet

Site Classification using shear wave velocity testing is essential

MAM and MASW methods are fast and cost-effective methods for developing a VS100 profile

VS100 data can greatly reduce the spectral accelerations used in building design
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