Redefining possible

INCREASING STUDENT PERFORMANCE WITH ACOUSTICS

Presented by:

Steve Meszaros, M.Sc., P.Eng. Technical Director / Associate - Acoustics, Noise, & Vibration

Steve Meszaros, M.Sc., P.Eng.

Technical Director / Associate - Acoustics, Noise, & Vibration

Education

- · B.Sc. in Mechanical Engineering, University of Manitoba (1994).
- M.Sc. in Biosystems Engineering, University of Manitoba (1998).

Experience

- Consulting on Acoustics Noise & Vibration projects since 2000
 Hospitals, University Labs, Research & Development Companies
 - Schools
 - Theatres, Auditoria, Lecture Halls, Studio
 Office, Residential, and Hotel Towers
 - Airports, Rail Corridors, Helipads, and District Masterplanning

WHAT IS ACOUSTICS? What do you know about acoustics?

- 1. Room Acoustics
- 2. Sound Isolation
- 3. Background Noise

Abstract

Schools are evolving to include more interactive learning and more technology in less traditional classrooms. The acoustic design is critical to student performance but is often seen as an enhancement rather than a requirement.

We will discuss the three main acoustic subjects in school design: · reducing distraction

- · enhancing communication
- · creating a calm environment

We will provide clarity on the functional requirements and how to achieve them in a cost-effective manner, and demonstrate how good acoustics creates a healthy learning environment for both students and teachers.

Learning Objectives

- 1. Understand why acoustics is important for students and teachers.
- 2. Learn what acoustic targets are appropriate.
- 3. Learn how to incorporate good acoustic design into the overall design.
- 4. Understand construction requirements for meeting acoustic targets.

Summary Acoustics Background / Metrics 1. Why acoustics are important 2. Functional requirements 3. Acoustic targets and criteria

- reducing distraction (sound isolation)
- enhancing communication (room acoustics)
 creating a calm environment (background noise)
- 4. Value of acoustics/examples

Our ears are less sensitive to both low and high frequencies

A-weighting Curve

Sound Transmission Class (STC)

Sound Transmission Class (STC)

- In common use
- Single number rating
- · Based on sound transmission loss data
- · Lab test under ideal conditions
- Sliding contour fit
- · Available for most partitions Based on isolating human speech

Sound Transmission Class (STC)

Benefits

- Simple to use
- · Easy to compare various partitions

Disadvantages

- Not applicable to low frequency sources
 Mechanical equipment
- Subwoofers
- · May not ensure occupant comfort or privacy

Sound Transmission Class (STC)

Subjective impression to noise isolation:

*Assumes a quiet background sound level, typical for residential living areas (~35 dBA)

Same Rating - Different Results

Outdoor-Indoor Transmission Class (OITC)

Benefits

- · Simple to use
- Appropriate for rank ordering exterior façade assemblies
- Intended to evaluate outdoor-to-indoor noise transfer from: vehicular, aircraft and railway traffic
- Preferable over STC for exterior façade ranking because it includes lower frequencies (down to 80 Hz)

Disadvantages

Simplified single number ratings may hide deficiencies in critical applications

Impact Insulation Class (IIC)

Impact Insulation Class (IIC)

Frequency (Hz)

Impact Insulation Class (IIC)

Benefits

- · Simple to use for preliminary selection
- · Easy to compare various constructions and floor finishes

Disadvantages

- · Inadequate where impact isolation is critical
- May not ensure occupant comfort .

Impact Insulation Class (IIC)

Subjective impression to impact noise

IIC Rating	Impressions of Impact/Footstep Noise Heard				
<45	Poor:	Normal walking clearly audible below, other impacts, chair movement, dropped objects audible, unsuitable for multi-family units or where moderate isolation is required within same dwelling unit			
45-55	Basic:	Normal walking (in hard shoes) still clearly audible, may be adequate between spaces within same dwelling unit, not suitable for most multi-family buildings,			
55-60	Marginal:	Normal walking noise still clearly audible when background noise levels are fairly low; may be adequate for multi-family buildings in less critical situations			
60-70	Good:	Normal walking audible only during very low background noise situations, adequate for most multi-family buildings			
70-80	Very Good:	Normal walking largely inaudible, generally adequate for even most sensitive, (high quality, low background noise) situations			
80+	Excellent:	Virtually no audible impact noise transmitted from walking, small dropped objects etc.			

Taken from: City of Vancouver Noise Control Manual

Room Acoustics

Supports:

- Speech
- Music

Recording

- By giving attention to:
 - Occupant requirements Room Shape
 - Volume
 - Finishes

Reverberation (RT₆₀)

Reverberation

- · Reverberation is the decay (or persistence) of a sound in an enclosed space. One measure is the time (RT_{60}) required for the sound to diminish 60 dB
- · The appropriate reverberation time depends on the use of the space and its volume
- Musical uses benefit from longer $\rm RT_{60}$ values while speech has higher clarity with low $\rm RT_{60}$ times

Background Noise (NC, dBA/dBC)

Simple, single number ratings:

- NC (noise criteria) · Uses tangential rating scheme
 - · Easy to apply in design

dBA/dBC (A- and C- weighted decibels)

Good for evaluation

- More challenging for design Uses A and C weighting to address both mid- and low- frequency requirements

Background Noise

Supports:

- Calm environment Speech comprehension Recording
- Privacy*

- By giving attention to: Occupant requirements External noise source control
 - (environmental, adjacent spaces)

 Internal noise source control

 - (occupants, activity) Mechanical system noise control (ducted, neighbouring, in-room, vibration isolation)

Why Acoustics Are Important

Why Acoustics are Important

SAT scores decrease with poor acoustics

Bronzaft (1975, 1981)

- Measured noise and test scores on two sides of a school
 One side adjacent to train line
 Before and after noise mitigation from the train line
- Evans and Maxwell (1997)
- Chronic noise exposure reduced reading scores (even when tested in a quiet environment)
 Noise exposure is related to impairment in speech perception

Haines, Brentnall, Stansfeld and Klineberg (2003) "Results from recent quantitative research consistently demonstrate that children are a high risk group, vulnerable to the adverse effects of noise exposure, especially effects on cognitive performance, motivation and annovance."

Why Acoustics are Important

SAT scores decrease with poor acoustics

Shield and Dockrell (2008) "Activities affected by noise include memory, reading, motivation, and attention"

"Children with special educational needs were found to be more susceptible to the effects of classroom babble upon verbal tasks than other children."

"It is essential to give careful consideration to the acoustic design of a school in order to optimize conditions for teaching and learning.

Design "should consider the most acoustically sensitive activity" – John Bradley

Speech communication is the most acoustically sensitive activity

Quiet

- · Reduces strain on teachers voices
- · Increases intelligibility (SNR)
- · Young, hearing impairment, ESL need quiet

Functional Requirements

- 4 Cs: Creativity Creative Thinking and Problem Solving Communication Collaboration

- Multi-media (Audio/Video): Recording (microphones) Amplified sound (speakers)

Building Design: • Open Classrooms • Learning Commons • 'Neighborhoods'

Functional Requirements

Flexibility Future-proofing Matching design to actual use

Options to consider:

- Operable walls Modular construction
- No walls

Best Solution: Communication between users and designers

Acoustic Targets and Criteria

Acoustical Society of America ANSI/ASA 512.60-2010Part 1 American National Standard Acoustical Performance Criteria, Design Requirement, and Guidelines for Schools, Part 1: Permanent Schools

Key Points:

- Focus on 'traditional' Classrooms
- Background Noise Levels <35 dBA
 Reverberation Time (RT60) = 0.6 0.7 s
- Reverberation Time (R 160) = 0.6 0.
 Sound Isolation (STC)
- 50 classroom to classroom
- 53 classroom to W/C
- 45 classroom to corridor
- 60 classroom to music / auditorium / mechanical / gym / cafeteria
 Impact Noise (IIC) 45 classroom to classroom

Reducing External Distractions

Sound Isolation (STC)

- 50 classroom to classroom
 53 classroom to W/C
- 45 classroom to corridor
- · 60 classroom to music / auditorium / mechanical / gym / cafeteria
- · Impact Noise (IIC) 45 classroom to classroom

Reducing External Distractions

Sound Isolation (STC) • 50 – classroom to classroom

NOT ENOUGH IN CLASSROOMS WITH TECHNOLOGY

TARGET MINIMUM STC 55 With STAGGERED OR DOUBLE STUD CONSTRUCTION

Reducing External Distractions

Impact Noise (IIC) 45 - classroom to classroom

Tested without floor finish

NOT ENOUGH IF NOT CARPETED

Final performance should be IIC 55 or higher

Sound Isolation

Flanking Paths to Consider:

Penetrations

Ceiling PlenumGlazing

· Ducts

Doors
 Electrical Boxes

• Etc.

Floor/Ceiling Construction

Layers (top to bottom)	Thickness	STC	IIC	
Composite slab (concrete) on 75 mm steel deck	150 mm	51	21	
- with vinyl floor	150 mm	51	33	
- with carpet	150 mm	51	55	A
- with vinyl floor and ACT	518 mm	55	51	
- with carpet and ACT	518 mm	55	65	
 with vinyl floor and GWB ceiling plus ACT 	684 mm	72	61	
CLT (5-ply) 175 mm thick	175 mm	41	25	Constant of the owner
- with vinyl floor	175 mm	41	29	
- with carpet	175 mm	41	34	1
- with vinyl floor and ACT	526 mm	51	38	
- with carpet and ACT	526 mm	51	40	
 with vinyl floor and GWB ceiling plus ACT 	634 mm	70	58	
Concrete topping (regular weight) 38 mm thick Rubber nuggets on foil 12.7 mm thick CLT (5-ply) 175 mm thick	226 mm	53	46	

Enhancing Communication

Room Acoustics (RT₆₀) • 0.6 s for small classrooms (<283 m³)* • 0.7 s for large classrooms (>283 m³)

* Must be readily adaptable to meet 0.3 s

Room Acoustics - Room Requirements

Acoustic Requirements	Small Volume	Medium Volume	Large Volume
Special	Recording room Music Practice Room	Music Room SPECI	Auditorium Theatre
High	Project Room Quiet Room	A/V Room Tele-Learning	Multi-purpose
Medium	Private Office	Library	
Low	W/C Storage	Corridor	Lobby CIENT Atrium

Creating a Calm Environment

Background Noise Level (NC or dBA/dBC) • NC 30, 35/55 dBA/dBC for small and large classrooms

spaces • Outdoor play areas should not exceed 55 dBA

 MEP services are usually continuous noise sources Outdoor noise sources (transportation, industry, etc.

Building Services Noise Control

Duct-borne Noise

Fan noise · Flow generated noise

· VAV noise

- Transmission through partitions
- · Minimum wall/floor/ceiling construction
- · Equipment enclosure

Structure-borne Noise (Vibration)

- Mechanical vibration, once in the structure, can be radiated as noise many floors / bays away
- · Vibration Isolation of all vibrating equipment is important

Combined overall noise level needs to meet the NC or dBA/dBC criteria specified for the space

Outdoor to Indoor Noise Control

Transmission through exterior partitions

 Must consider window and wall components (OITC ratings) · Environmental sources include:

- · Transportation (road, rail, air, marine)
- · Industry
- · Mechanical systems (both on and off site)
- Consideration must also be given for noise levels in outdoor spaces (barriers, etc.)

Combined overall noise level needs to meet the NC or dBA/dBC criteria specified for the space

Value of Acoustics

Sound Isolation
• Deal with stopping distraction (both indoor and outdoor)

Walls

Simple GWB and LIGHT GAUGE steel studs with fibrous insulation (5/8" Type 'X' GWB / 6" SS w batt / 5/8" Type 'X' GWB)
 Concrete block (8")

Windows

- 3/8" glass ~STC 35 (OITC 32)
 ½" laminated glass ~ STC 38 (OITC 34)
 ¼" lam / ½" airspace / ¼" lam ~ STC 42 (OITC 33)

Doors

Solid core wood or insulated metal, no seals ~ STC 20
 With full perimeter seals and drop seal ~ STC 30

Valuable Example

- Partition:
- High School Guidance Counselor's Office / Waiting Room
- . Partition cut around radiator Radiator is continuous and open through wall

Valuable Example

Penetrations

- Sleeved for the full depth of the penetration grouted in place
- 6mm clearance filled with fiberglass
- · Sealed both sides with non-hardening acoustic caulking

Value of Acoustics

Room Acoustics Communication
 Calm Environment

Solutions: Cautions: Fibrous/porous (thicker or spaced from wall)
Ceiling Tiles

Microphones
Speakers

Acoustic Requirements	Small Volume	Medium Volume	Large Volume
Special	Recording room Music Practice Room	Music Room SPECA	Auditorium Theatre
High	Project Room Quiet Room	A/V Room Tele-Learning	Multi-purpose
Medium	Private Office	Library	
Low	W/C Storage	Corridor SUFF	Lobby CIENT Atrium

Baffles

Valuable Example

Room Acoustics Issue

· Space with 1/4" mineral fibre tiles glued to sloped ceiling · Attempted to fix with PA systems

Other Acoustic Considerations

Environmental Noise • Transportation and other external noises (including rooftop) • Construction noise • Impact on outdoor areas and indoors

Floor Vibration
• Students walking in corridors causing upper floors to shake

Impact Noise
• Thumping footfalls

Details

Acoustics details are paramount to success
 No 'silver bullet', ignoring one aspect can be problematic

Quick Summary

Background Noise Room Acoustics Sound Isolation

