CREATING MODERN LEARNING SPACES Designing and building schools with mass timber

| Introduction

- | Wood in Schools
- | Case studies
 - + Q&A

INTRODUCTION - THINKSPACE

- Surrey, Kelowna, Edmonton, Vancouver
 Island, in operation since 1963
- 45 staff, with 16 architects; projects in BC, AB,
 YT and California
- Focus: K-12 schools, post-secondary, healthcare, commercial, civic
- More than 500 K-12 projects

INTRODUCTION

Ray Wolfe, Architect, AIBC, MRAIC Partner, Thinkspace Architecture Planning Interior Design Ltd.

ray.wolfe@thinkspace.ca

INTRODUCTION

Pete Godau Director of Facilities, School District No. 62 (Sooke)

- 40+ years in building maintenance & industrial, commercial, residential construction
- 20 years at SD62, part of team that has built 10 schools / maintains 30 sites
- Currently overseeing delivery of South Langford Elementary School

WOOD IN SCHOOLS: WHY?

- Office / tall buildings are well covered
 - Interest is A2 occupancy buildings
- Significant government support in BC
- Several manufacturers & installers and industry
- Directly related to our design practice at Thinkspace

Belmont Secondary | Architect - Thinkspace

21ST CENTURY LEARNING ENVIRONMENTS

- Neighborhoods: 150 students maximum v
- Collaboration: spaces that are transparent and connected
- Flexible: diverse spaces and connectivity
- Daylighting: health and well being
- Connection to nature: biophilic, views, community

21ST CENTURY LEARNING ENVIRONMENTS

WoodWorks! BC Three – and Four Storey School Study

Learning neighbourhoods

Interconnectivity + collaboration

THE MOVE TOWARDS WOOD IN SCHOOLS

- More spaces on smaller sites necessitates threeand four-storey schools
- Environmental design + sustainability leading to timber structures
- 21st century learning = collaboration, daylighting, neighbourhood size
- We started working in 2018 with Fast + Epp on report to explore this topic
- Learned that **costs are comparable** to steel, so other factors (e.g. sustainability) could drive use of wood

SYSTEM COMPARISONS

- Relative cost analysis between three timber-framed options
- Comparison to steel framed structure
- Holistic analysis accounts for material costs, finishes, erection times, etc.
- Systems are comparable

Four-Storey Wood School Design in British Columbia: An Analysis of Structural System Cost Comparisons

March 2020

NEW INSIGHTS INTO WOOD USE IN 2022

- Applicable to all provinces, commissioned by Forestry Innovation Investment (BC)
- Variety of subjects ranging from types of • wood construction to current case studies, rationale for using wood, plus overview of building codes

KEY CONCLUSIONS

- Wood continues to be highly viable for the construction of schools
- Numerous tangible, and intangible, benefits of using wood
- Pricing is fluid, but other considerations can outweigh cost
- Gaps in building codes = alternative solutions
- Mass timber is more accessible, more affordable, more technologically advanced
- Wood in schools is here to stay, but education is required for wider adoption

BC HAS THE SUPPORT

- BC Wood First Act (2009)
- Office of Mass Timber Implementation, Mass Timber Advisory Council
- integrating mass timber into mainstream construction
- Mass Timber Action Plan will drive innovation
- more public buildings steered towards mass timber
- Federal support through Green Construction in Wood is significant, promotes wider acceptance

GOVERNMENT SUPPORT FOR WOOD

- Province of BC is **COMMITTED** to reducing carbon footprint
- Also WANTS TO PROMOTE use of local resources
- HIGHLY MOTIVATED to support the BC economy Wood First Act
- SD62 is **COMMITTED** to supporting this initiative

Forestry Innovation Investment®

WOOD MAKES SENSE FOR SCHOOLS

- BC's #1 resource is & has always been wood
- Wood & mass timber support local economies
- Mass timber buildings place students in natural surrounding that supports learning experience
- Educators are comfortable in teaching students about environments they grew up in
- School districts & consultant teams have access to growing mass timber industry
- Able to use BC industry that is leading the move towards more mass timber buildings

THE FUTURE BENEFITS FROM THE PAST

- #1 goal in K-12 schools is student success – preparing youth for the future
- Teaching them why BC is leader in lumber industry is important
- Students learn in buildings built from natural surroundings, in the environment they live in
- Most importantly, they learn from ancestral and Indigenous peoples how to best use land and resources
- Indigenous peoples have been building with wood for 1000s of years

CASE STUDIES

SOUTH LANGFORD ELEMENTARY SCHOOL

LANGFORI

MANDATE FOR THIS SCHOOL

- Build an 80K /400 grades K 5 education facility for growing local community
- Capital agreement between the MoE & SD62 to design and build efficient school that supports local industry
- Consultants & SD62 team set standards and guidelines to create Ministry-supported K-5 inclusive education facility
- Building will have childcare facility as NLC
- Designed to have significant greenhouse gas reductions
- Designed as full mass timber building

SOUTH LANGFORD ELEMENTARY TEAM

- School District #62 (Sooke)
- Ministry of Education and Childcare
- Thinkspace Architecture Planning Interior Design Ltd.
- AES Engineering Ltd Electrical
- AME Consulting Group Ltd Mechanical
- Herold Engineering Ltd Structural
- Associated Engineering Civil

DESIGN DEVELOPMENT

- Challenging property shape
 plus elevation changes
- How do we use those challenges as opportunities?
- Field at the top, building at center, parking closest to the road
- Use building to support access to all levels
- Designed to have the building fit into natural surroundings

CREATING A MASS TIMBER SCHOOL

- Opened discussions with BC Government, Forestry Innovation, reviewed naturally:wood information
- Discussions with mass timber manufacturers
 - feedback on design elements
 - how they will plan for a project of this size
 - schedule that might fit their manufacturing plants
 - how many manufacturers are interested
- Four-storey mass timber design was final decision
- Use site to our advantage 3 ½ storeys, with Level 0 reduces need for a switchback ramp; elevator & childcare have level entry access
- Level 1 opens to the main play areas in front of school
- 2nd floor walks out to field level

WHY MASS TIMBER?

- Mass timber construction growing in Victoria, trades more familiar
- Shorter construction schedule with prefabrication
- Reducing operational carbon
- Reduced embodied carbon
- Align with sustainability initiatives and desires on the part of all parties involved

BUILDING TYPE + USE

Building

- A2 occupancy
- 1 hr rated floors and structure, 1.5 provided
- 4 storey interconnected atrium

Use

- K-7 school
- Project spaces
- Office
- Gym
- Multi-purpose
- Learning commons

PROGRAM + STRUCTURE

DESIGNED AS MASS TIMBER

<u>Roof</u>

- Roof is constructed of a two-ply modified roofing system onto 6" rigid insulation
- Roofing membrane will be constructed on top of a DLT panel
- Roofing assembly is rated at R30, which exceeded NECB 2015 is which is R-25 (prescriptively)

<u>Walls</u>

- Walls are built from a solid CLT panel or wood stud framing
- Outbound wall insulation is 5" thick throughout with rainscreen system.
- Effective R-value for the typical wall assembly is R-26.
- Use of wood throughout provides a more thermally effective system

BUILDING CODE + APPROACHES

Approach

- 1.5 hr rated beams, columns + connections
- 2 hr rated exit stairs + elevator shaft
 - Smoke detection
 - Automatic smoke extraction system
 - 6 alternative solutions

CARBON REDUCTION

75% GHG reduction target from MOE (Ministry of Education)

SUSTAINABILITY, BY THE NUMBERS

DESIGNING SOUTH LANGFORD

The team (part 1):

- Worked together, incorporated mass timber elements into the learning environment, and to promote and accentuate wood elements
- Shifted mechanical and electrical elements to fit structural and civil designs of this site
- Adjusted positively and collaboratively to items that presented schedule and financial risks

DESIGNING SOUTH LANGFORD

The team (part 2):

- Constructively adapted to standards, which showed that they are an experienced team
- Provided feedback throughout the process to ensure we covered every option available
- Is confident with the design and a building that the community will learn in, enjoy, and use for generations

ROBERT G KUHN CENTRE at Trinity Western University

WHY HYBRID MASS TIMBER

- 1. A shared goal to achieve Design Excellence and to expose wood
- 2. Create sense of place
- 3. Cost effective design
- Mass timber structure with a mix of formal and informal learning spaces

CREATING A SENSE OF PLACE...

SINE

BUILDING TYPE + USE

Building

- A2 occupancy
- 1 hr rated floors and structure
- 4 storey interconnected atrium

Use

- Active learning classrooms
- Breakout rooms
- Offices
- Multi-purpose computer labs
- Student life spaces

PROGRAM + STRUCTURE

DESIGNED AS MASS TIMBER

MASS TIMBER = ACCEPTABLE FRR

- * Encapsulating with drywall not the only solution
- * Engineered design (charring) ensure safety
- * Significant cost and schedule savings

BUILDING CODE + APPROACHES

Approach

- Early conversations with AHJ
- Bring code consultant on board at start
- 5 alternate solutions

1.Mixed construction
2.Omission of draft stops at floor openings
3.Combustible interior ceiling finishes
4.Exit separation and closures
5.Exit exposure protection

TAKING ADVANTAGE OF EXPOSING WOOD

165

P

HT.

(Decenter of

OPTIMIZING MATERIAL CAPACITY

7 TYPICAL STEEL BEAM CLADDING

PRE-FABRICATION ADVANTAGES

C°Ç

PETE

0

0

TOLERANCES

- Concrete = 10mm
- Mass Timber = 2mm

FIRE RATINGS + CONNECTIONS

CONSIDERATIONS

- Hybrid pros and cons
- Weather protection
- M+E coordination champion
- Modelling
- Early discussions with suppliers

TA'TALU ELEMENTARY SCHOOL

Client: School District No.36 (Surrey School District)

WHY HYBRID MASS TIMBER

- 1. Cost-effective design
- 2. Reduce operational carbon emissions
- 3. A shared goal to achieve design excellence

BUILDING TYPE + USE

Building

- A2 occupancy
- 1 hr rated floors and structure. 1.5hr provided
- 3 storey interconnected atrium

Use

- K-7 school
- Project spaces
- Office
- Gym, Multi-purpose, Learning commons

PROGRAM + STRUCTURE

2 FLOOR PLAN OVERVIEW - LEVEL 2

PROGRAM + STRUCTURE

Oper

0

GP

CHN

DESIGNED AS HYBRID MASS TIMBER

HYBRID MASS TIMBER IS AN ALTERNATIVE

- * Buildings don't have to be all wood, steel / concrete – can use hybrid options
- * Hybrid mass timber can bridge code gaps
- * Useful in projects like Ta'talu
- * What is best for the project while still advocating wood?

BUILDING CODE + APPROACHES

Approach

- 1.5 hr rated beams, columns + connections
- 2 hr rated exit stairs + elevator shaft
- Smoke detection
- Automatic smoke extraction system
- 3 alternate solutions

PRE-FABRICATION ADVANTAGES

HYBRID SYSTEM

HYBRID SYSTEM

DGS Construction Western Archrib

TOLERANCES

DGS Construction Western Archrib

TOLERANCES

DGS Construction Western Archrib

HYBRID SYSTEM

HARDANTHE HALLAND

DGS Construction Western Archrib

CARBON REDUCTION

Figure 5: Global Warming Potential by Building Assembly Group – Comparison Between Wood and Steel Construction

• Early conversations with AHJ

CO

- Continue investigating embodied carbon in wood construction
- Prefabrication advantages
- Clarity and coordination of ratings

CONCLUSIONS

- Know **why** you're using wood
- Understand the **building use and type**
- Design with **wood from the start**
- **Connect** with the AHJ
- Know your materials
- Pre-fabrication advantages and **optimizations**
- Embodied carbon reductions

QUESTIONS

ray.wolfe@thinkspace.ca pgodau@sd62.bc.ca

