

What the Education Design Community Can Learn from the Military

Denise Breunig - AIA, CEFP, LEED AP BD+C Nadja Turek - PE, LEED AP BD+C, GGP

Learning Objectives

- Adapt military design ideas for speed of access, cleanliness, and outdoor environments into an educational facility design
- Understand how the layout and design of a DoD elementary school facilitated 21st Century learning pedagogies.
- Adapt military design ideas for resiliency and efficiency
- Learn from several case studies

Agenda

- Speed of access, cleanliness, and outdoor environments
 - Various barracks and dormitories
 - Fort Jackson dining halls
- 21st Century vs. Traditional
 - Barkley Elementary School
- Resiliency and green building
 - New AFSOC campus

1

Speed of access, cleanliness and outdoor environments

Barracks, Dorms and Dining

._W_.

Outdoor to Indoor

.-W-.

From outside to inside

·-W-·

Getting outside...in any weather

5

Getting outside...in any weather

._W_.

Adaptive reuse & green building

.-W-.

What they require

- 30% energy use reduction over ASHRAE 90.1
- Daylighting for 75% of classrooms
- 30% solar for domestic hot water heating
- 30% water use reduction
- · Enhanced commissioning
- Low Impact Design for stormwater management
- Low-emitting, recycled, green materials

Minimum LEED Silver performance

What they get

- Ft Jackson & Benning dorms
 - 37-42% energy savings
 - 40-60% water savings
 - LEED Silver performance
- Ft Jackson dining hall
 - 26% energy savings
 - 40% water savings
 - LEED Gold performance

2

21st century learning & green building

DoDEA

Department of Defense Education Activity

- Manages education for children of military families around the world
- +/-170 schools around the world serving nearly 80,000 students
 - DoDDS and DDESS
- Global school district with similar challenges to other large districts
 - Need for Standards in educational pedagogies and environments....because transitional client base
 - 3 to 5 year planning cycle from design to occupancy

21ST CENTURY SCHOOL CASE STUDY:

Barkley Elementary School

- Located at Ft. Campbell, KY
- Serves 740 Pre-K thru 5th grade military dependent children
- \$38M total construction cost for 141,972 SF plus site amenities
 - \$208/SF estimate of building cost only
- Designed in 2012/13
- Completion expected 2015/16 school year

DoDEA Schools

Guiding Principles

- Provide student-centered facilities for all learners
- Be flexible and adaptable
- Be global community-centered

Mission

Educate, Engage and Empower each student to succeed in a dynamic world

Vision

 To be among the world's leaders in education, enriching the lives of militaryconnected students and the communities in which they live.

DoDEA Schools - Design Goals

- Current Best Practices in Pedagogies and Facility Design to achieve Excellence in Education
- Global Awareness and Connectedness
- Sense of Community micro to macro
- Secure Environment both physically and psychologically
- Resilient and Energy efficient
- Sustainable Features = Teaching Tools

21st Century Education

Learning by experiencing

- Active vs. passive learning
- Individuality
- Creativity
- Socialization
- Problem solving
- Connectivity

A Learning "Neighborhood"

- Learning Studios
 - Smaller (< typ classroom)
 - Lecture/Group Sessions
- Learning Hub
 - Larger neighborhood "commons"
 - More learning stations
 - Varied modal learning
 - Opportunities for interaction
- Group & 1-to-1 Rooms
 - Higher Acoustic Separation
 - Teacher-to-team /student learning
 - Older kids' project teams
 - Younger kids' specialized centers

Exterior Program Highlights

- To be built on the site of existing middle school, while it remains open
- Drop-offs and Drives
- Parking and Circulation
- Playgrounds and Outdoor Learning Areas
 - Outdoor seating/amphitheater
 - Patio with shade structures
 - Rainwater harvesting for educational purposes
 - Bio-swale for educational purposes

.-₩-.

Project Sustainability Requirements

DoDEA Academic Instruction: Sustainability and Energy Efficiency Program

- Use the "Building as a Teaching Tool" for Green Buildings
- 40% Energy Usage Reduction over ASHRAE 90.1-2007
- Daylighting for 75% of Classrooms
- 30% Solar for Domestic Hot Water Heating
- 30% Water Use Reduction
- Low Impact Design for Stormwater Management
- Share the Building with Community

Minimum LEED Silver Certified

Energy Conservation Goal & Reference Energy Use Intensity (EUI)

Baseline or "typical" primary school in climate zone 4

40% better than ASHRAE 90.1-2007 DoDEA's Goal

38.4 kBtu/sf/yr

64 kBtu/sf/yr

School built to ASHRAE Advanced Energy Design Guide (AEDG) for K-12 Schools (50% Energy Savings)

Approximately 47% better than ASHRAE 90.1-2007

32 kBtu/sf/yr

Net-zero Schools:

(actual post-occupancy data)

- Richardsville Elementary (KY)
- Turkey Foot Middle School (KY)

Barkley ES:

19.1 kBtu/sf/yr 59% savings

16.6 kBtu/sf/yr 21.7 kBtu/sf/yr

...3/\f....

Reducing Energy Use Intensity

Design Team

- Building Envelope
- Lighting Loads
- Heating and Cooling Loads
- Solar Hot Water Heating

The Owner

- Equipment Loads and Behaviors
 - Buy efficient equipment
 - On-going measurement and monitoring of the building's performance
 - Energy saving policies/student buy-in

21st Century: Using the School as a Teaching Tool

- Meshing green design elements with interior finishes, furniture, signage, and curriculum
- Making energy saving technologies and renewables "visible" via an interactive "dashboard," which also enables performance monitoring

·-W-·

3

Resilient design

Resiliency

- Resilient Design Principles
 - Provide for basic human needs
 - Diverse and redundant systems are inherently more resilient
 - Simple, passive, and flexible systems are more resilient.
 - Locally available, renewable, or reclaimed resources are more resilient.
 - Anticipates interruptions and a dynamic future
 - Social equity and community contribute to resilience

The Resilient Design Institute (RDI)

Resilient Design Strategies

Infrastructure

- Transportation multi-modal
- Communication multi-modal as well
- Energy distributed power; smart/micro-grids; local
- Water distributed storage and treatment
- Grid-tied, district systems

Buildings

- Extremely efficient
- Local power and water, with local control
- Include storage thermal, water, power
- Passive heating/cooling & ventilation
 - Orientation
 - Operable windows

Resilient Design Strategies

...are often most (or *only*) effective at a community, district or campus scale

- District Energy systems
- Storage
- Low Impact Development
- Microgrid(s)
- Net-zero energy or water

Princeton & Sandy

- Resilient design strategies
 - On site co-generation
 - Electrical microgrid
- University became a "place of refuge"
 - Community members could warm up, charge cell phones, use wireless, etc.

._W_.

Resiliency Case Study: Initial Plan Scope 50 Acre site – campus utilities and infrastructure - \$15.5M Airfield Apron - \$22.9M Hangar with maintenance shops – 70k sf - \$57.2M Operations facility – 21k sf Warehouse – 33k sf Group HQ – 5k sf \$42.2M

High Performance Building (Modeling)

- Designed to 30%+ efficiency over code
- 57% of interior spaces daylit
- Maximized PV potential of south-facing roof
 - Could provide 35% of energy;50% of cost

Solar Ready Design

- Estimated energy use intensity (EUI) of buildings
 - Est. 883 MWh/yr
 - Equiv. to one acre of PV
- PV in conjunction with microgrid & generators to provide resiliency

Hybrid Micro-Grid

- Campus will be gridconnected
- Improve reliability
- · Able to "island" if needed
- Accommodates future PV and generator power

.-W.. Woolpert

Place-making and Pedestrians

- Resiliency design supports the mission
 - Places of respite
 - Places of gathering
 - Places of ceremony

Summary

- Speed of access, cleanliness, and outdoor environments
 - Barracks, dormitories, and dining halls
- 21st Century, green
 - Barkley Elementary School
- Resilient design
 - New AFSOC campus

