SIX FEET APART, TOGETHER

MAXIMIZING YOUR CURRENT SCHOOLS WHILE PHYSICAL DISTANCING
School systems around the nation are grappling with the complexities of opening their facilities to varying degrees this fall. Doing so as safely as possible will require creative solutions to implement CDC and other public health guidelines for physical distancing, face coverings, handwashing, and operational strategies for continuous cleaning. To assist K-12 systems in planning for lower space occupancies, LS3P has analyzed various scenarios for typical room types and furnishings.

Every space is different, and feet and inches matter for room layouts. Structure matters. Door placement matters. Safe egress matters. Circulation matters.

The chart below represents various options of re-opening schools based on the current rate of community transition within your local population.
THINGS TO THINK ABOUT

Work with local agencies and governments to develop the safest plan for your school.

Understand your facility capacity.

Understand how your schools can operate.

Understand that difficulties arise as soon as we leave our homes.

Prepare your school to reopen.

OVER communicate to staff, teachers, parents, and students.
MAXIMIZING YOUR CURRENT SCHOOLS WHILE SOCIAL DISTANCING

Pre-COVID Capacity: 800
Capacity with 6 ft distancing: 448

Taking this 800 student school and applying 6' physical distancing throughout all of the classrooms changes the capacity to 448 students.
These scenarios explore potential layouts for typical spaces in elementary, middle, and high school settings, with analysis of various uses, sizes, and furnishings. To comply with current CDC guidelines, our studies use a 6' distance between students from the centerline.

Diagrams show potential space utilization with existing furniture, with additional furniture, and with physical barriers. We understand that every state, every school district, and every school is unique, and that there are no “one size fits all” solutions. Each system will need to work with local agencies to tailor solutions for each situation; however, public health guidelines will inform every step of this process.

These studies are for general planning purposes, and actual occupancies should be verified with existing room geometries and furnishings.
MEASUREMENTS WITHIN THE CLASSROOM

Using 3 ft Tables

3 feet
\textit{table to table}

6 feet
\textit{center of chair to center of chair}

Using desk alternating

3.58 feet?
\textit{center of chair to center of chair}

5 feet?
\textit{center of chair to center of chair}

7.15 feet?
\textit{center of chair to center of chair}
PHYSICAL DISTANCING IN A CLASSROOM (GUIDE)

MEASUREMENTS WITHIN THE CLASSROOM

Using desks side by side

Note: For desk layouts we have used center of chair to center of chair to measure physical distancing due to varying desk sizes.
MAXIMIZING YOUR CURRENT SCHOOLS WHILE SOCIAL DISTANCING
To allow for proper physical distancing and eliminate multiple touch points in elementary classrooms, schools may need to consider temporarily closing learning/activity centers and removing associated furniture that are often found inside the classroom.

In comparing desks with tables, desks offer more flexibility for physical distancing. If extra desks are available, consider moving these into spaces that would traditionally only have tables. Refer to page 10-27 for physical distancing diagrams.

Circulation, both within the classroom and in corridors, will require additional planning. Even if desks configurations allow for 6’ of physical distancing, students may be required to wear face coverings when moving around the classroom where circulation space may be constrained. Refer to pages 30-31 for diagrams addressing circulation.

Use assigned desk seating within the classroom to eliminate shared surfaces.
PHYSICAL DISTANCING IN A CLASSROOM

1,000 SQ FT CLASSROOM | 3 FT TABLES

PRE-COVID LAYOUT

Student Capacity: 24
Student Tables Needed: 8

PHYSICAL DISTANCING - USING EXISTING FURNITURE

Student Capacity: 12
Student Tables Needed: 8

50%

These tables are not used during traditional class instruction and would not count towards classroom capacity. While having to implement physical distancing in the classroom consider using these tables for traditional class instruction if they are not able to be replaced. See the following diagrams for examples of this.
PHYSICAL DISTANCING IN A CLASSROOM

1,000 SQ FT CLASSROOM | 3 FT TABLES

PHYSICAL DISTANCING - MAXIMIZING

Student Capacity: 18
Student Tables Needed: 18

75%

PHYSICAL BARRIERS

Student Capacity: 24
Student Tables Needed: 12

100%

The red lines in the diagram above indicate physical barriers such as plexiglass dividers.
PHYSICAL DISTANCING IN A CLASSROOM

1,000 SQ FT CLASSROOM | DESK

PRE-COVID LAYOUT
Student Capacity: 24
Student Desk Needed: 24

PHYSICAL DISTANCING - REMOVING DESK
Student Capacity: 15
Student Desk Needed: 15

62.5%
PHYSICAL DISTANCING IN A CLASSROOM

1,000 SQ FT CLASSROOM | DESK

PHYSICAL DISTANCING - ALTERNATING DESK

Student Capacity: 13
Student Desk Needed: 24

54%
PHYSICAL DISTANCING IN A CLASSEROOM

900 SQ FT CLASSROOM | 3’ TABLE

PRE-COVID LAYOUT

Student Capacity: 35
Student Tables Needed: 10

PHYSICAL DISTANCING - USING EXISTING FURNITURE

Student Capacity: 12
Student Tables Needed: 10

34%

These tables are not used during traditional class instruction and would not count towards classroom capacity. While having to implement physical distancing in the classroom consider using these tables for traditional class instruction if they are not able to be replaced. See the following diagrams for examples of this.
PHYSICAL DISTANCING IN A CLASSROOM

900 SQ FT CLASSROOM | 3’ TABLE

PHYSICAL DISTANCING - MAXIMIZING
Student Capacity: 18
Student Tables Needed: 18

51%

PHYSICAL BARRIERS
Student Capacity: 24
Student Tables Needed: 12

68%

The red lines in the diagram above indicate physical barriers such as plexiglass dividers.
PHYSICAL DISTANCING IN A CLASSROOM

900 SQ FT CLASSROOM | DESK

PRE-COVID LAYOUT

Student Capacity: 30
Student Tables Needed: 30

PHYSICAL DISTANCING - ALTERNATING DESK

Student Capacity: 18
Student Tables Needed: 30

60%
PHYSICAL DISTANCING IN A CLASSROOM

900 SQ FT CLASSROOM | DESK

PHYSICAL DISTANCING - REMOVING DESK

Student Capacity: 18
Student Tables Needed: 18

60%
PHYSICAL DISTANCING IN A CLASSROOM

765 SQ FT CLASSROOM | DESK

PRE-COVID LAYOUT

Student Capacity: 30
Student Desk Needed: 30

PHYSICAL DISTANCING - ALTERNATING DESK

Student Capacity: 17
Student Tables Needed: 34

* This dimension does not include the classroom entry vestibule found at the top right of this diagram.

56%
PHYSICAL DISTANCING IN A **CLASSROOM**

VARIOUS CLASSROOM SIZES | DESK

500 SQ FT
Student Capacity: 10

750 SQ FT
Student Capacity: 17
PHYSICAL DISTANCING IN A CLASSROOM

800 SQ FT CLASSROOM | DESK

<table>
<thead>
<tr>
<th>800 SQ FT - RECTANGLE</th>
<th>800 SQ FT - SQUARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Capacity: 19</td>
<td>Student Capacity: 17</td>
</tr>
</tbody>
</table>
PHYSICAL DISTANCING IN A **CLASSROOM**

850 SQ FT CLASSROOM | DESK

850 SQ FT - RECTANGLE
Student Capacity: 19

850 SQ FT - SQUARE
Student Capacity: 20
PHYSICAL DISTANCING IN A CLASSROOM

1,287 SQ FT | SCIENCE CLASSROOM

PRE-COVID LAYOUT
Student Capacity: 32
Science Tables: 8

PHYSICAL DISTANCING
Student Capacity: 13
Student Tables Needed: 8

41%
PHYSICAL DISTANCING IN A CLASSROOM

1,287 SQ FT | SCIENCE CLASSROOM

PHYSICAL BARRIER

Student Capacity: 15
Student Tables Needed: 8

47%

The red lines in the diagram above indicate physical barriers such as plexiglass dividers.
PHYSICAL DISTANCING IN A CLASSROOM

TABLE GUIDE

Square/Rectangle

Round

Varied
PHYSICAL DISTANCING IN A CLASSROOM

1,000 SQ FT CLASSROOM | VARIOUS TABLE SIZES

PHYSICAL DISTANCING - 5’ ROUND TABLES

PHYSICAL DISTANCING - 5’- 6” HEXAGON TABLE
CIRCULATION

One-way circulation patterns may help to minimize exposure by reducing close contacts.

The average school corridor is 10’. In a corridor of this width, students should be able to safely pass by each other in the opposite direction while maintaining 6’ of distance.

Face coverings are highly encouraged, and in many cases may be required, when students and teachers circulate throughout the school.

Place markings and signage on the floor to encourage 6’ physical distancing between students. These markings will not only show students distancing front-to-back, but also side-to-side. The diagram to the right shows various examples of these graphics.

Maintaining physical distancing during class changes in middle and high schools will be challenging. To eliminate crowded corridors during class changes, consider using a staggered bell schedule or moving teachers from class to class instead of students. Physical activity activates the brain and benefits students academically and students will miss active transitions between classes; however, teachers can incorporate movement within the classroom at specific times throughout the day and make use of outdoor spaces whenever possible.

Classroom circulation is not addressed in the previous physical analysis diagrams. See page 30-31 for examples of a 900 SF classroom that addresses student and teacher circulation and provides teachers with a specific teaching area for physical distancing.
UNDERSTANDING CIRCULATION

THROUGHOUT CORRIDORS - TWO-WAY CIRCULATION
UNDERSTANDING CIRCULATION

WITHIN A CLASSROOM | 900 SQ FT

Student Capacity: 30

Student Capacity: 7

approx. 8 feet
if teacher is standing at whiteboard or close to wall

PRE-COVID LAYOUT

6' STUDENT CIRCULATION
6' TEACHER AREA

23%
UNDERSTANDING CIRCULATION

WITHIN A CLASSROOM | 900 SQ FT

3' STUDENT CIRCULATION
6' TEACHER AREA

Student Capacity: 9

30%

approx. 9.5 feet
if teacher is standing at whiteboard
or close to wall

3' STUDENT CIRCULATION
4'-7” TEACHER AREA

Student Capacity: 12

40%

approx. 7 feet
if teacher is standing at whiteboard
or close to wall

3' STUDENT CIRCULATION

6' TEACHER AREA

4'-7” TEACHER AREA

(Student Capacity: 9)

(Student Capacity: 12)

STUDENT CIRCULATION

TEACHER AREA
Schools may consider using large spaces and extracurricular spaces such as the cafeteria, gymnasium, media center, collaboration/learning commons area, and computer labs as temporary classrooms. Please note, staffing these additional spaces may require additional teachers. Schools will need to work with local code officials to determine egress and space maximums.

These spaces may also be used for storage of furniture if they are not being used.
PHYSICAL DISTANCING THROUGH THE SCHOOL

Media Center

Cafeteria

Gymnasium

Learning Commons
FOOD SERVICE CONSIDERATIONS

Schools may consider temporarily closing dining areas and have students eat breakfast and lunch in their classrooms. Box lunches delivered to the classroom can eliminate the need for students to travel through the serving line.

If the cafeteria dining space remains open, schools can:
- Add plexiglass to register area
- Place markings on floor to show physical distancing while in food service line
- Use disposable products to decrease cross contamination
- Add time between lunch periods to properly clean tables and seats
PHYSICAL DISTANCING IN A DINING SPACE

2,388 SQ FT | CAFETERIA

Pre-COVID Seating Capacity: 276
Seating Capacity with 6 ft distancing: 78

28%

If cafeteria is used seat and dismiss this side of cafeteria first to decrease circulation.
CAFETERIA AS CLASSROOMS
Additional Student Capacity: 90
Additional Teachers Needed: 5
PHYSICAL DISTANCING IN AN AUDITORIUM

5,900 SQ FT | AUDITORIUM

Pre-COVID Seating Capacity: 538
Seating Capacity with 6 ft distancing: 78

14.5%
PHYSICAL DISTANCING IN A GYMNASIUM

13,303 SQ FT | BLEACHERS AND FLOOR SEATING

BLEACHERS
Pre-COVID Bleacher Capacity: 726
Bleacher Capacity with 6 ft distancing: 104

FLOOR SEATING
Pre-COVID Floor Seating Capacity: 240
Floor Seating Capacity with 6 ft distancing: 120

14%

50%
PHYSICAL DISTANCING IN A MEDIA CENTER

3,905 SQ FT

Pre-COVID Seating Capacity: 76
Seating Capacity with 6 ft distancing: 40

53%

MEDIA CENTER AS CLASSROOM SPACE

Additional Student Capacity: 36
Additional Teachers Needed: 2
PHYSICAL DISTANCING IN A BAND ROOM

1,894 SQ FT

6 FT DISTANCING
Pre-COVID Capacity: 39
Capacity with 6 ft distancing: 24

62%

10 FT DISTANCING
Pre-COVID Capacity: 39
Capacity with 10 ft distancing: 12

31%
RESTROOM CONSIDERATIONS

In elementary schools, encourage students who have classroom restrooms to use only those bathrooms. Use hall restrooms for these students only in emergency situations.

Schools will need to create a schedule for cleaning group/hall restrooms hourly throughout the building, and will need to work with custodians to create a plan for closing the bathrooms during these times.

Schools will also need to implement strategies to limit and control the number of students in the restroom at one time.

Create as many no-touch solutions as possible. Fixtures that can be retrofitted to be touchless include:

- Toilets
- Sinks
- Soap Dispensers
- Towel Dispensers
- Trash cans

Drinking fountains are often found outside of restrooms. As these drinking fountains are not monitored closely, consider working with code officials to determine the safest possible options for providing drinking water. Please see page 49 for more information regarding drinking fountains.

Provide wayfinding and age-appropriate informational signage.

The CDC is currently recommending that toilets have lids that can be closed during flushing.

Do not allow students to congregate in the restrooms.

Continuously run exhaust fans.

Develop a plan for physical distancing while queuing outside of restrooms.

Explore strategies to let students know when a restroom is at maximum capacity, such as using hall passes that can attach to the wall as a visual cue. Each classroom should be assigned specific restrooms to use.

Where feasible and safe, keep doors open to eliminate an additional touch point.

See the following diagram for additional restroom considerations.
Student with 3’ radius Hand Sanitizer Station

Tape off and close all stalls, urinals, and sinks that should not be used by students.

Schools will need to consider strategies for safer access to drinking fountains during the school day, such as providing paper cups to minimize opportunities for viral transmission.

Where possible, circulation should be routed so that students enter the restroom near the toilets and exit the restroom near the sinks.

If helpful for a particular restroom layout, consider assigning stalls/urinals to specific sinks. Students who are waiting to use sink should wait at the stall/urinal until the previous occupant has completed hand washing to alleviate crowding at sinks.
DRINKING FOUNTAIN CONSIDERATIONS

Schools will need to consider strategies for safer access to drinking fountains during the school day to minimize opportunities for viral transmission.

For all drinking fountains considerations and modifications, schools will need to work with local authorities and review agencies. Disconnecting drinking fountains could be seen as a health, safety, and wellness code violation.

Students could only use drinking fountains as fill-up stations. Provide disposable cups and encourage students to bring filled water bottles that can be taken home and cleaned daily.

Where allowed by code, temporarily close drinking fountains that are not able to be closely monitored and provide access to water at other locations.
Checklist for Environmental Considerations to Prepare for Re-Occupancy

In lieu of Federal, State, or local guidelines school divisions should, at a minimum, consider the following Best Management Practices when preparing your facilities for re-occupancy following the extended vacancies of buildings:

☐ Assess building for moisture intrusion and mold growth

☐ Inspect your facilities for water leaks

☐ Assess water-containing components and systems to identify those at high risk from stagnant conditions for bacterial/biological growth (i.e. plumbing fixtures, water treatment systems, water storage tanks, and cooling towers)

☐ Flush your water systems frequently and prior to re-occupancy of your facilities - this keeps treated water in your buildings and helps fight bacteria and possible Legionella growth in your building
 ☐ Follow local water authority protocol/guidance along with EPA, CDC, and Environmental Science, Policy & Research Institute (ESPRI) detailed guidance

☐ Review chemical storage areas (typically in science labs and custodial closets)
 ☐ Thoroughly inspect hazardous materials stored in science labs
 ☐ Make sure containers are intact and not leaking or compromised
 ☐ Look at the shelf-life of chemicals
 Note: Give yourself ample time to properly coordinate disposal of expired products

☐ Inspect floor drains water traps to prevent sewer gas intrusion

☐ Evaluate HVAC Systems
 ☐ Assess filter replacements and check for mold, stagnant water, vermin, and pests
 ☐ Inspect/clean cooling coils, condensate drain pans, and ductwork

☐ Inspect kitchen/food preparations areas
 ☐ Evaluate/clean grease traps
 ☐ Inspect food prep areas for signs of pest and infestations

☐ Practice the 3 Ps (Expect an increase in calls for Indoor Air Quality (IAQ) concerns)
 ☐ Be Prepared
 ☐ Be Proactive
 ☐ Be Professional

Provided by Julius Williams of Prince Williams County Public Schools
Thank you to all of the contributors:

Paul Boney, LS3P
Taylor Morris, LS3P
Mary Brehier, LS3P
Ginny Magrath, LS3P
Katherine Ball, LS3P
Mary Beth Branham, LS3P
Meredith Ray, LS3P
Nathan Daniel, LS3P
Nathan Maune, North Carolina Depart
Al Ciarochi, Prince Williams County Public Schools
Julius Williams, Prince Williams County Public Schools
Eddie Anderson, New Hanover County Schools
David Waggoner, CBRE | Heery
Chuck Sylors, MB Kahn; Trustee, Greenville County Schools
Bain Stewart, Greenville County Schools
Edi Francesconi, A4LE
ABOUT LS3P

Established in 1963, LS3P is a multidisciplinary firm offering architecture, interiors, and planning services to a wide variety of clients nationwide. Central to all regions of the Southeast with offices in Charleston, Columbia, Greenville, Myrtle Beach, Charlotte, Raleigh, Wilmington, and Savannah, LS3P is committed to bringing state-of-the-art design, technology, and expertise of a strong regional firm closer to our clients on a local level. With a staff of over 340 employees, we have the resources to offer total design capabilities from site selection to occupancy, yet we are small enough to give personal attention to each client.

With nearly 100 years of school design experience (including our Boney Architects heritage dating back to 1922) and our work on over 2,000 school facilities, we have a passion for creating leading-edge learning environments and have done an extensive amount of research into the future of education. Our expertise includes the design of flexible and diverse learning spaces which support the full integration of technology. We believe that better spaces support innovative teaching and engaged learning.

The editor of DesignIntelligence has called LS3P “the most local of the global firms and the most ‘world-class’ of the locals.” LS3P brings a history of over 57 years of design excellence, with over 580 design awards across diverse practice areas. With a mission to “engage, design, and transform,” we are deeply committed to the communities we serve. We believe in collaboration, innovation, and building lasting relationships with our clients. Through our work at all scales, from small renovations to large campuses, we are proud to design educational environments which will serve their students, staff, and communities for generations.

For more information contact:
Paul Boney, FAIA ■ K-12 Education Practice Leader ■ PaulBoney@LS3P.com ■ 910.520.0812
Taylor Morris ■ K-12 Marketing Coordinator ■ TaylorMorris@LS3P.com ■ 803.807.0604
Ginny Magrath, AIA ■ K-12 Architect & Researcher ■ GinnyMagrath@LS3P.com ■ 704.371.7859

This Guide is provided as a space efficiency reference only and should not be construed as architectural, interior design, building code, legal, or medical advice. By using this Guide, the User agrees that LS3P ASSOCIATES LTD. and/or its contributing consultants (collectively, the “Author”) make no guarantees or warranties, express or implied including, but not limited to, the warranties of a professional standard of care, merchantability, or fitness for a particular purpose. The User is directed to applicable orders, guidelines, and recommendations of organizations including, but not limited to, executive officials, public health departments, the Centers for Disease Control, the Occupational Safety and Health Administration, and the World Health Organization. The User should not rely on the Author until the User has sought professional advice in the applicable jurisdiction. This Guide should not be construed as an offer by the Author to provide services in any profession or jurisdiction where the Author is not licensed. The Author reserves all rights including, but not limited to, copyrights. This Guide may not be reproduced, modified, or published without the express written permission of the Author. © Copyright 2020 LS3P ASSOCIATES LTD.